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ABSTRACT: Next-to-leading logarithmic final-state resummed predictions have tra-
ditionally been calculated, manually, separately for each observable. In this article we
derive NLL resummed results for generic observables. We highlight and discuss the
conditions that the observable should satisfy for the approach to be valid, in partic-
ular continuous globalness and recursive infrared and collinear safety. The resulting
resummation formula is expressed in terms of certain well-defined characteristics of
the observable. We have written a computer program, CAESAR, which, given a sub-
routine for an arbitrary observable, determines those characteristics, enabling full
automation of a large class of final-state resummations, in a range of processes.
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1. Introduction

It is a well known feature of QCD, and gauge theories in general, that final-state
properties of the bulk of events in high-energy collisions cannot be predicted by
standard fixed-order perturbative calculations. The very concept of ‘bulk’; or ‘typ-
ical” events implies that in the expression for their probability, each power of the
formally small coupling, as, is compensated by a coefficient of order 1/ag. These
large coefficients are generally associated with logarithms (L) of widely disparate
scales in the problem, and fixed-order truncations of the perturbative series often
give unreliable answers.

So it is necessary to reorganise the perturbative series in terms of sets of domi-
nant logarithmically enhanced classes of terms, i.e. a class of leading logarithmic (LL)
terms (which might for example go as a?L?"), next-to-leading logarithmic (NLL)

terms (e.g. af

L*~1) and so on. For an appropriate range of (large) values of the log-
arithm L, it can be shown that this resummed hierarchy is convergent,! 4.e. that NLL
terms are truly smaller than LL terms, and that next-to-next-to-leading logarithms

(NNLL) are smaller than NLL terms, etc.

1Strictly it will be an asymptotic series whose first few orders converge.



Despite the considerable practical importance of resummed results, the meth-
ods for making resummed final-state predictions suffer from significant limitations.
On one hand there exist purely analytical approaches, such as [[l, B, B], that give
state-of-the-art accuracy, but which must be repeated manually for each new observ-
able, often requiring considerable understanding of the underlying physics, as well as
mathematical ingenuity. On the other hand, there are Monte Carlo event generators,
such as Herwig [[]] or Pythia [[i], whose predictions can be applied to any observable,
but without any formal guarantees as to the accuracy of the prediction, other than
leading double logarithms. Often, the accuracy will actually be higher, but this can
only be established given a detailed understanding of the observable. Additionally,
event generator predictions are difficult to match with fixed-order results (though
progress is being made [ff]), and they are always ‘contaminated’ by non-perturbative
corrections, even at parton level.

This situation is quite unsatisfactory, especially compared to that for fixed-order
predictions. There, one has access to a range of programs (fixed-order Monte Carlos
— FOMGs, e.g. [[@,B, B, [0]) which, given a subroutine that calculates an observable
for arbitrary final-state configurations, return the coefficients of the first few (cur-
rently two for most processes) orders of the perturbative prediction for the observable.
A user wanting a prediction for some new observable can in this way easily obtain
it, without having to understand any of the subtleties of higher-order calculations or
real-virtual cancellations, all hidden inside the FOMC.

The purpose of the current paper is to show how one can automate resummed
calculations of final-states, while maintaining the ‘quality’ associated with analytical
resummations: guaranteed? state-of-the-art accuracy (NLL, as discussed below), a
purely perturbative answer, clean separation of LL, NLL contributions without spu-
rious contamination from uncontrolled higher-orders, and the ability to obtain the
order-by-order expansion for comparison and matching with fixed-order predictions.

These requirements imply a quite different approach compared to FOMCs or
event generators, in that the result will not simply be a weighted average over return
values from the computer routine for the observable: to obtain ‘analytic’ quality in
the result, one needs to know something about the analytical properties of the observ-
able. It is up to the automated resummation program to establish those properties,
by probing the observable-subroutine with suitable configurations, generally involv-
ing very soft and collinear emissions — high-precision computer arithmetic making
it possible to take nearly asymptotic limits. Having established certain analytical
properties of the observable the program can then use Monte Carlo methods over
specifically chosen sets of final states to cleanly determine the remaining information
needed for the resummation.

One of the characteristics of such a program is that it may reach the conclusion

2Except in certain pathological contrived cases, as discussed later.



that the observable under consideration is outside the class of supported observ-
ables. While seemingly a limitation — it implies that the program cannot resum all
observables — it is actually an essential feature, since it is only for certain classes
of observable that we have a good understanding of the approximations that are
legitimate when seeking a given accuracy.?

Let us now examine in more detail the problem that we treat.

1.1 Problem specification

We consider an observable V (g, gs, . ..), some function of the momenta ¢y, ¢s, ... in
the final state. We assume that it is infrared and collinear safe, and, furthermore,
that there is some number n (we will explicitly discuss 2 < n < 4) such that the
observable goes smoothly to zero for momentum configurations that approach the
limit of n narrow jets. We call this an (n + 1)-jet observable. Any incoming beam
jets (n; of them), as well as the outgoing jets, are included in this counting.

We introduce a function H(qi, go, - ..) that is 1 for events with n or more hard
jets, and zero otherwise. This allows us for example to write a hard n-jet cross

section,
> dO'N
OH = Z /d(I)N—H(ql,...,qN), (11)
N=n—n; dq)N

where doy/d®y is the differential cross section for producing N final-state particles.
We consider the integrated cross section, ¥y(v), for events satisfying the hard
n-jet cut, H, and for which, additionally, the observable is smaller than some value

v,

d
Z/d%%@ 0= V(g an) Mg, ay),  (12)
N

from which one can obtain (1/04)d¥y(v)/dv, the differential distribution for the
observable.
It is convenient to rewrite eq. ([.J) in a factorised form

Z/dB@fm 0) H(Prit1, -2 Pn) s (1.3)

involving, on one hand, the leading order differential cross section, dos/dB, for pro-
ducing a ‘Born’ event, B, that consists of n —n; outgoing hard momenta p,, 1, ...pp
in a given scattering channel ¢ (for example ¢q¢ — gq or qg — qg); and on the other

30ne could also envisage using such an approach to establish the accuracy that will be achieved
for a given observable when using normal event generators such as Herwig [[f] or Pythia [f]. For
example, specifically for two-jet events, our understanding is that Herwig, which uses a two-loop,
CMW scheme [EI] running coupling, and exact angular ordering, should implicitly contain the full
NLL resummed result for all global, exponentiating observables, though it is also accompanied by
unavoidable (potentially spurious) subleading and non-perturbative contributions.



other hand an ‘observable-dependent’ function fzs(v), which represents the fraction
of events, for the given subprocess and Born configuration, for which the observable
is smaller than v. The function H, which embodies the hard n-jet cut, is a function
only of the n — n; outgoing Born momenta.

The factorisation of the integrand in eq. ([.3) is strictly speaking defined only
for global observables (those affected by radiation in any direction [IJ]) and in the
limit v — 0. It is a consequence of the factorisation properties of soft and collinear
radiation, which ensure that fzs(v) is independent of the details of the n-jet hard
cut function H. In contrast, for v ~ 1 the factorisation is in general not possible, and
fB.s(v) depends implicitly also on the form of H, losing even its clear interpretation
as the fraction of events for which V(q,...,qy) < v, since its upper limit can differ
from 1 by an amount of order as.

1.2 Structure of result and nature of approach

For all (n+1)-jet global observables that have so far been resummed in the n-jet limit
[E7 IE? @7 IEv 7 Da IE? @7 7 @7 @7 @7 @7 @7 7 7 7 @7 7 @7 @]7 f&g(@)
has been found to have the property that, for small v, it can be written (dropping
the B and ¢ indexes, for compactness),

o' 1
flo) = (1+ Clﬁ +-)exp[Lgi(asL) + ga(asL) + asgs(asL) +--+] , L=In—,

v
(1.4)
to within corrections suppressed by powers of v. The function Lg;(agL) resums
Sudakov leading (or ‘double’) logarithms in the exponent, a?L"*!; gy(asL) resums
next-to-leading (or ‘single’) logarithms in the exponent, aff L"; and so forth.

It is non-trivial that f(v) should have an ‘exponentiated’ form such as eq. ([.4),
since its expansion contains terms with much stronger logarithmic dependence a* L,
alL*"~1 etc., than is present in the exponent. All of these strongly logarithmically
enhanced terms should be consistent with the exponential form.* Certain observ-
ables, notably JADE jet-resolution thresholds [BJ], for which the first logarithmically
enhanced terms have been calculated [B4], BH, have been explicitly found to be incon-
sistent with exponentiation. So far no observable of this kind has been resummed,
even at LL accuracy.

Here, rather than attempting to resum some given specific observable, we will
consider (in section ) the derivation of the final-state resummation for a generic
continuously-global [[J, Bf] observable. We find it helpful to enter into somewhat
more detail than is usually provided for observable-specific resummations (nowadays
quite standard), because it allows us to isolate the characteristics of the observable
that are necessary so as to arrive at the form eq. ([[.4)).

4Sometimes confusion arises as to whether one defines the logarithmic accuracy for the expansion
or the exponent. Here we shall always refer to the accuracy in the exponent.



The main new condition that emerges from this derivation is one that we call
recursive infrared and collinear (rIRC) safety, eqs. (B.4,B.5), because it involves two
nested, ordered, infrared and collinear limits. It essentially states that when there
are emissions on multiple widely separated scales, it should always be possible to
remove all but the hardest emissions without affecting the value of the observable.’
It is sufficient in order to guarantee, up to NLL accuracy (and beyond, we believe),
that the resummed result will be of the form eq. ([-4).

Given rIRC safety, the resummed result is given by a master formula, eq. (B.4),
where the LL and NLL terms, g;(asl) and gs(asl), are expressed in terms of a
variety of well-identifiable characteristics of the observable. For example the LL
contribution, as well as part of the NLL contribution, are just related to the manner
in which the observable scales as one takes a single emission and makes it soft and /or
collinear, eq. (B-]]). The remaining part of the NLL contribution depends instead on
the value of the observable when multiple emissions are simultaneously made soft and
collinear. It is obtained by integrating over a suitable subset of such configurations,
eq. (39).

The strength of this approach is that the relevant characteristics of the observ-
able are sufficiently well-defined that they can be determined numerically given just
a subroutine for the observable. Some general features of the computer program
that we have written to carry out the procedure, the ‘Computer Automated Expert
Semi-Analytical Resummer’ (CAESAR) are described in section f]. It will be made
publicly available in the coming future. It makes use of high-precision arithmetic
[B7] to reliably take infrared and collinear limits, and behaves in a manner somewhat
reminiscent of an expert system, insofar as it poses (and answers) a set of questions
about the observable, so as to establish the suitability of the observable for resum-
mation, and determine the best strategies for the numerical integrations that are to
be carried out. Thus new observables can be resummed without a user having any
resummation expertise.

One should be aware that not all observables are suited to this approach. For
example, recursively IRC unsafe observables cannot be dealt with, and often lead to
a result for gs(asL) that is divergent logarithmically in an infrared regulator, much
as occurs for NLO coefficients with (plain) IRC unsafe observables. One of the main
characteristics of CAESAR is that it establishes whether an observable is within its
scope.

There also exist observables that are rIRC safe, but for which gs(asL) diverges
above some fixed value of agL. This is akin to divergences of fixed-order coefficients
that can occur close to specific kinematic boundaries, and is a sign of a need for
further resummation. In our case the problem arises for observables whose value can
be small due to cancellations between contributions from different emissions, and it

SIf this sounds suspiciously like normal infrared collinear safety, then (a) think hard and (b) read
on!



can in some situations be resolved with a transform-based general approach such as
[B]. It often occurs [P4] that such divergences are in a sufficiently suppressed region
that they can in practice be ignored.

Despite the existence of these partial limitations, the method is suitable for a
wide variety of observables, reproducing existing results and having already produced
a number of new predictions. In the form discussed here, it is suitable for ete™ —
2 jets, ete™ — 3 jets, DIS 1 + 1 jets and 2 + 1 jets, hadron-hadron 1 + 2 jets with
an additional hard boson (v, W*, Z° H, not all implemented numerically yet) and
hadron-hadron 2 + 2 jets, the latter involving also the Botts-Sterman soft colour
evolution matrices [BY].

A companion paper [BY], which discusses a range of possible continuously global
event shapes for hadron-hadron dijet events, provides an illustration of the power of
the method, insofar as all resummed results presented there have been obtained with
CAESAR. Some results for continuous classes of ee™ observables, such as those of

P2, EQ] are also discussed here, in appendix [3.

1.3 Guide to reading the article

The table of contents provides an overview of the different sections in this paper.
In view of the length of the paper however we provide here also some guidance for
readers wishing to concentrate on certain specific issues.

For a reader not too familiar with resummations and interested in understanding
the physical principles behind the approach, or one who wishes to study in detail the
assumptions that we have made here, section f] should be read first.

In any case we recommend that at some stage the reader take a look at sec-
tion PB.1], which contains the main analytical results and applicability conditions for
a general resummation. In the event that this appears too abstract, section .9 pro-
vides a detailed worked example, within our approach, of the canonical event shape
resummation, that for the e™e™ thrust.

The question of how to translate the analytical results into a computer automated
approach is the subject of section . An overview of the implementation is given as
a flowchart, figure [}, while the text discusses a combination of general and more
technical issues that arise in practice. For readers interested in the details, or in
implementing the approach themselves, explicit formulae are given in appendices [
and [B, including, for completeness, a number of expressions that exist already in
the literature. Important subtleties that arise for the consistent insertion of multiple
emissions are discussed appendix [J.

For readers interested especially in certain specific physics issues, we recommend
a more transversal reading. This is especially the case for recursive IRC safety, whose
origins are to be found in section P.3. Its central definition is in section B.1, while
an intuitive understanding may be helped by number of examples, in section B.3
and appendix [0, of IRC safe observables that are rIRC unsafe. Appendix [, which



discusses the difficulties in finding a mathematically rigorous definition of normal
IRC safety, may also be of interest.

The NLL term in the resummation, F, that accounts for the observable’s sen-
sitivity to multiple emissions is also discussed at various points in the paper. The
initial derivation is in section P.2.9, while two final forms for it are given in the master-
formula section, B.J. A number of issues arise in its general practical determination,
as presented in section [.1.3.

A number of more specialised issues arise for observables whose F diverges at
finite values of agL. The origin of the problem is reviewed in sections B.4 and [F.],
together with a discussion of the location of potential divergences. The question of
divergences is of interest also from the point of view of the practical implementation
in CAESAR, because of numerical convergence issues that arise when a divergence is
present. This has led to our developing various techniques to probe the cancella-
tions that lead to the divergences in the first place and semi-analytical integration
methods to improve the Monte Carlo convergence. These issues are discussed in
appendices [F.9 and [F.3.

As we have already mentioned, readers interested in applications of the method
should consult the companion paper [B9] for examples in hadronic dijet events, as
well as appendix [ for a discussion of two continuous classes (one proposed in [PJ],
the other new) of e*e™ observables.

Finally, we invite the reader to consult the web site [, which contains a range
of extra resources, including results from automated analyses of a large number of
observables in a range of processes, far more than could reasonably be discussed here
and in [BY].

2. Derivation of master resummation formula

The master formula that we shall here derive was originally presented in [iZ]. Nu-
merous considerations enter into its derivation. First we will examine a little more
closely the general problem that we wish to solve; we will then show how to obtain
the solution in a simple case, progressively introducing the elements needed to obtain
the final general result.

We consider a hard event consisting of n hard partons, all massless, having four-
momenta pi, ..., p,. We shall call this our ‘Born’ event and each of the hard Born
partons will be referred to as ‘legs’. For brevity we will use {p} to denote the set of
all the Born momenta. An index ¢ will be used when we refer to a particular leg.

Given such a system, we shall consider an observable (or variable) V', which is
a function of the momenta in the event. The observable should be positive defined
and vanish for the Born event, V({p}) = 0. Furthermore it should give a continuous
measure of the extent to which the energy-momentum flow in the event differs from



that of the Born event, or equivalently a measure of the departure from the n-jet
limit.

Observables of this kind, such as event-shapes and jet-resolution parameters,
usually have the property that in the presence of a single emission k& that is soft and
collinear to a leg ¢, the value of the observable can be parametrised as

o)\ *
V({p} k) = dg (%) o~ ben® gg(gb(@) ) (2.1)
The {p} denote the Born momenta after recoil from the emission k; ) is what we shall
call the hard scale of the problem, though in practice there may not be a unique way
of defining it. The observable’s dependence on the momentum k is expressed in terms
of /@S‘”, n® and ¢©, respectively the transverse momentum, rapidity and azimuthal
angle of the emission, as measured with respect to the hard leg ¢. To fully specify the
azimuthal angle (where relevant) one needs additionally to define a suitable reference
plane, for example that containing p, and some second (non-parallel) leg.

The precise parametric dependence of the observable on the momentum k is
specified through the values of the coefficients ay, by and the combination dyge(¢®).
For example for the thrust T in ete™ — 2 jets [[J], one has [P

k,(f) ©
T=1-T, r({p}, k) = 66*% : (2.2)

giving a; = by = dy = ge(¢) = 1, for £ = 1,2. Though the dependence on d; and g,(¢)
arises only through the product dyg,(¢), we will find it convenient to give a standard
normalisation to the gy(¢), such as gy(m/2) = 1, leaving the observable-dependent
normalisation in d,.

The form (E) is sufficiently common (B [, [3, [0, [0, [3, [, 21, 23, B3, £
23, 4, 21, Y, BA, B4, 3, [fd] that we can safely make it a prerequisite of our approach
without unduly losing in generality.

Note that the coefficients ay, by, dy and the function g, can depend on the Born
configuration under consideration, i.e. they may be a function of the {p}. Here we
shall carry out our analysis for a specific Born configuration, and leave to section [I.9
the discussion of how to integrate over the Born configurations.

Knowledge of the above coefficients for each leg is of course not sufficient to fully
specify the observable’s dependence on a single emission, since eq. (B.1)) is relevant
only to the limit of a soft and collinear emission (a LL, or double logarithmic region).
One may legitimately worry that for a NLL (single logarithmic) resummation one
might also need some information on the large-angle soft limit or on the hard collinear
limit. We shall return to this issue in a while.



2.1 Single-emission results (qq case)

Having parametrised the observable’s dependence on a single emission, let us now
examine how that information can be used to determine the logarithmic structure
of a first order calculation — this is a convenient first step on the way to a full
resummation. We will initially consider the simple case of a quark-antiquark system,
but with the feature that the quark (p;) and anti-quark (ps) are not necessarily back-
to-back, nor of the same energy. This will make it easier to generalise the answer
subsequently.

2.1.1 Single-gluon emission pattern

Let us decompose the momentum of the emitted gluon £ into its Sudakov compo-
nents:
k= 2zWp 4+ 2P py + ky cos dniy + Ky sin O Nout (2.3)

where ny, and ng, are purely space-like unit vectors, respectively in and perpendic-
ular to the p;-py plane. The condition that the emission be massless implies k? =
222 Q2,, where %, is the invariant squared mass of the ¢g dipole, Q%, = 2p;.pa;
k. is the relativistically invariant transverse momentum of the emission with respect

to the dipole,
2k.p1)(2k.p2)

k2 — (
' (2p1.p2)
Note that for an emission sufficiently collinear to leg 1, the invariant transverse

(2.4)

momentum k;, and azimuthal angle ¢, coincide with those defined relative to the leg
1, kgl) and ¢()| that appear in eq. (2:1). This holds as long as tan% < tan %,
where 0, is the angle between momenta a and b. Furthermore, in this region the
rapidity with respect to leg 1 is,

2:VE, 2F, 1. 20

=n+In—om, =—In— 2.5
i U] O n=3g (2.5)

where 7 is the rapidity of the emission in the dipole centre-of-mass system. Analogous

77(1) =1In

statements hold for emissions collinear to leg 2.

To calculate the distribution for the observable in the one-gluon approximation,
one also needs the matrix element for the emission of a single gluon that is soft or
collinear to either of the hard legs. Using standard results for the soft and collinear
limits of matrix elements [[7], one can write®

1 1 2 2
asCr Pat )pgq(z( )) .l )pgq(z( ))
47 k2 ’
6Subtleties arise in specifying the matrix element and phase space, insofar as our definition of the
gluon momentum, eq. (@), does not uniquely specify the final state, notably in the hard collinear

limit — to do so requires additionally that one give a prescription for the relation between the Born
momenta before ({p}) and after emission ({$}). As discussed in appendix [d, for a single emission,

M2 (k)| = (2.6)

the details of the prescription are however irrelevant at our accuracy.

— 10 —



where p,, is the quark to gluon splitting function (with colour factors removed),
2pgq(z) = 14 (1 — 2)?. The phase space for integration, [dk], can be written as

1)
dz ;l—qbdkf . (2.7)

2(1) 27

[dk] =

With this notation, the first-order expression for the fraction of events, f(v), for
which the final-state observable V' is smaller than a given value v is:

o) =1+ / (dk] [M(K)| (80 — V ({5} %)) — 1) . (2.8a)
— 1 [l PEE VAL - v). (2.8)

In the upper line, the first term in the bracket corresponds to the real emission of
a gluon, which contributes to f(v) only if V({p}, k) is smaller than v. The second
term represents the order oy virtual contribution, whose matrix-element is identical
(modulo the sign) to that for the real emission, because of unitarity. Since virtual
contributions do not affect the value of the observable, this term contributes over
the whole integration region.

2.1.2 Further requirements on the observable

To help us consider the issues that arise in the evaluation of eq. (B.8H), figure [l shows
in the n-In(k;/Q) plane, the region (shaded area) in which the integrand of eq. (B.8H)
is non-zero, for some value of v. This region is delimited by two kinds of boundaries.
Firstly, there are kinematic boundaries associated with the requirements 2z < 1
and z® < 1. These give the upper edges of the shaded region. Secondly there are
boundaries at V ({p}, k) = v associated with the ©-function in eq. (2.8H).

The intersections of the various boundaries set the characteristic scales (trans-
verse momenta) of the problem. Firstly, the scale at the point where the two hard
boundaries meet is of the order of the hard scale, (), of the problem. In this cor-
ner, 2 ~ 22 ~ 1, eq. (2.9) is a poor approximation to the true real and virtual
matrix elements. But the region () ~ 2} ~ 1 contributes at most at O (as(Q))
(without logarithmic enhancements) to the integral, so the ‘error’ is NNLL and can
accordingly be neglected.

Another scale arises, for each leg ¢, from the intersection between the kinematic
boundary and the ©-function boundary, ¢.e. the left and right-hand corners of the
shaded region. If one makes the assumption that one can extend the soft and collinear
parametrisation (B.J]) into the hard collinear region, then one finds, using eq. (£:3),

ap+by
ki

that for a given fixed z(9), the observable scales as . The scales associated with

the lateral corners of the shaded region are then

ky ~ vt/ (@t (2.9)

— 11 —
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Figure 1: The n-In(k;/Q) plane for a single emission, together with a representation
(shaded area) of the region in k; and 7 over which the integrand of eq. (R.8H) is non
zero. The specific positions of the lines correspond to the case of an observable with
ap =as =a=1and by =1, by = 3/2. For simplicity, the ¢-dependence of the problem
has been neglected. The insets correspond to a magnification by a factor of order In1/v.
Further details are given in the text.

In practice, in the hard collinear region, the observable V ({p}, k) may depart from
its soft and collinear parametrisation (R.IJ). Such a situation is illustrated in the
right-hand inset of fig. [, which represents the true boundary of the shaded region
(solid line), V({p},k) = v, and the boundary that would be obtained based on
the soft-collinear parametrised form for V' (dashed line). As long as the difference
between the true form of the observable and the parametrisation is just a non-zero
2-dependent factor of order 1, then eq. (2.9) remains valid. Furthermore, when
evaluating eq. (R.8H), replacing the true observable V ({p}, k) with its parametrised
form leads to a difference of order as, which is a NNLL correction.”

From a practical (numerical) point of view, it is rather difficult to establish
whether a departure from the parametrised form is of order 1. However the condi-

Strictly speaking, for this to be true, one needs also to ensure that the difference compared
to the parametrisation is truly limited to the collinear region. Defining £(z) as ratio of the true
value of the observable to its parametrisation, this requirement can be expressed by saying that

fol % In&(z) should be finite.
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tion can be formulated equivalently by requiring that for collinear emissions, almost
everywhere, V' be non-zero and that

olnV({p}, k)

= ay+b. 2.10
01nk§z) o (2.10)

fixed z(6), $(0)

Here the expression ‘almost everywhere’ should be taken in its usual mathematical
sense of everywhere except possibly a region of zero measure. An important point
about eq. (B.I0) concerns collinear safety: the observable must vanish as k; is taken
to zero. Accordingly we have the condition a;+ b, > 0. A similar condition has been
noted also in [J].

As a final source of characteristic scales of the problem, we have the intersection
between the O-function in eq. (R.8H) and the large-angle boundary between the
hard legs. Let us temporarily assume that we can extend the soft and collinear
parametrisation to the soft large-angle region. Then for leg ¢ the characteristic scale
that emerges is

ky ~ vl/eQ. (2.11)

We immediately see that a problem will arise if a; # as: the knowledge that we have
so far gathered about the observable does not tell us where, in 7, the transition occurs
between the parametrised forms for the different legs. This ambiguity corresponds
to a single logarithmic integration from k, ~ vY/“Q to k; ~ v'/%2(Q over an unknown
region of angle. Since the boundary between the legs may be determined by some
potentially quite complex procedure, such as a jet algorithm, in a first instance it is
preferable not to require any understanding of it.

One partial solution to this problem is to consider only observables for which
a1 = as. This ensures that the ambiguity in the boundary between the two jets leads
at most to an uncertainty in eq. (B.8H) of order a, (NNLL). Fig. [I] illustrates this in
the left-hand inset, in a case where additionally the true behaviour of the observable
(solid lines) does not exactly follow the parameterisations (dashed lines). As long as
this deviation from the parametrisation is by a factor of order 1, in a limited region
in angle, then it too will only affect eq. (B.8H) by a NNLL correction. Technically,
it is most convenient to formulate the requirement as being that, for soft emissions,
almost everywhere, V' should be non-zero and that

olnV({p}, k)

= q = CLl fry a2_ (212)
01n/<;t(£)

fixed (), ¢p(£)

This coincides with the condition for continuous globalness [[2, Bf], and ensures, at
higher orders, the absence also of so-called non-global logarithms. Finally, we note
that infrared safety implies a > 0.
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2.1.3 Evaluation of single-emission integrals

Given the extra requirements on the observable, eqs. (B-I0) and (E:13), we are now
in a position to carry out the integrations of eq. (B.8H), replacing V ({p}, k) with
its parametrised form, eq. (B]). As a shorthand, we introduce R(v), (minus) the
single-gluon contribution to f,

R(v) = / (dK AP (R) OV ({7} k) — v) (2.13)

which can be written as

2 Q* k2 o o
v)=>» C ol z(g)p (219 x
o[ fnee
x O(n)6(1—29)e (v — dy (%) ¢ ben® gg(gb)) . (2.14)

We recall that the relations between 2, n and n® were given in section P11
Only one splitting function, pgq(z(@), appears because the splitting function from
the other leg has a very small argument and one can replace zpy,(z) = 2. The
separation between the two legs has been arbitrarily placed at n = 0.

We note the introduction of the scale k? for the coupling: though the scale of the
coupling has no relevance at first order, it is useful to keep track of it in anticipation
of what follows later.

For observables with b, # 0, the k; integration in eq. (2.I4) can be separated
into two parts, according to whether the upper limit on 7 stems from the ©-function
of 1 — 29, or from that associated with the observable. The boundary between the
two regions occurs for k; ~ Qvﬁ. We perform the n integration separately in each
of the two regions and write

:iCF /Q2 dkj as( )( Q12 é)"‘
—1 Q2 ﬁ k? m t

G Ak dg os(KY) [, Qua ke \® doge()
[T 0D (1, @ Ly [ (B ]|

20

where we have neglected NNLL contributions associated with the exact position of
the boundary between the two regions. In the upper k; region, the constant By is
associated with the large-n part of the integration over the p,, splitting function,

352/01%<%Tq<2)—1):—% (2.16)

In the lower k; region, the upper limit on 1 comes from the condition on the observ-
able, and it is implicitly assumed that the observable (specifically, dyg¢(¢)) is positive
definite.
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It is convenient to express eq. (B.15) in terms of certain ‘standard building-
blocks’,

2
2F
R(v) = ZCF {W(L) +ry(L) (hldg — by ln Ué) +
=1
L L Q12 1
BT 20pT — ) In== L=Iln- 2.1
B, Qw)}* Cr () w2, ul, (217)
where
_ 27 d¢
Ind; =Indg+ | = 1Inge(e). (2.18)
0 27

The ‘standard building blocks’ are the double logarithmic piece r, (containing all the
LL and some NLL contributions),

a+bz

k2 ag(k dk? J(k2) (L AN
TZ(L):/Q 7aib£ th S 1 ——|—/ = b—z—i_ln (@) 5

as well as various purely single logarithmic (NLL) pieces,

k2 ag(k2
T(L) = / k—;M ’ (2.20)
Q2e—2L g ™

and r, = Jrry, which can be expressed in terms of the T'(L) as

ry(L) = blz [T (g) ~T (asz)] . (2.21)

Though the results here have been derived for by, # 0, their b, — 0 limit is finite and
well-defined, as can straightforwardly be verified.

Several remarks are in order concerning eq. (B.17). Firstly, in the sum over
legs, the contributions all depend just on () and the properties of the given leg —
dependence on the invariant mass of the two legs, (012, has been placed outside the
sum, and is independent of the b,. Such a structure will be useful when extending
the result to configurations with several hard legs.

Another point concerns frame dependence and @ dependence of eq. (R.17). The
derivation has been carried out in a specific Lorentz frame and with some arbitrary
value for (). The result should not however depend on the choice of frame or of
Q). To see that it truly does not, we observe that a change of frame corresponds
simply to a change in the values of the leg energies, Ey — Ej. For a given emission
this corresponds to change in rapidity with respect to the leg n) — 77(4)/ and an
associated change in the coefficients dy — d) (such that the observable remains
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frame-independent):

El

77(3)' =n® +1n EZ ’ (2.22a)
o

dy = dy+ by 1nEf. (2.22b)
¢

Inserting the change in d, into eq. (R.17), leads to the result that R(v) is frame-
independent.

The demonstration that eq. (B.17) is independent of the choice of @ is only
slightly more involved: at NLL accuracy, r¢(v) depends on @ as follows,

%Tfig =T <£) — (a+bg)r, + O (NNLL) , (2.23)

a

while T'(L) and r, have @) dependence only at NNLL accuracy. The @-independence
of the observable implies O, o Ind, = a. Inserting this into eq. (2:I7), one finds that
R(v) is @-dependent only at NNLL accuracy (strictly speaking, the NNLL terms
arise only in the running-coupling case, so for the first-order, fixed-coupling result
there is no @)-dependence at all).

2.2 All-order treatment (gq case)

For the continuously global observables that we discuss in this article, the extension
of the previous section’s treatment to all (NLL) orders involves two main ingredi-
ents: the running of the coupling, with its associated scheme dependence; and the
treatment of multiple ‘independent’ emissions that are widely separated in rapidity.

This separation can be explained at second order for example by noting that in
the soft and collinear region one can write the squared matrix element for two-gluon
production as

M2 (e, )| = (1M () |2 ()| + |V (ki R ) (2.24)

where we have the product of two independent emissions, |M?(k)| being the squared
matrix element for single gluon emission, as given in eq. (2.§), plus a correlated,
‘non-abelian’ part |M 2(ky, k2)| which contributes only when the two gluons are close
in rapidity (there is also a corresponding part with a ¢g pair). The generalisation to
all orders of the first part will be at the base of our treatment of multiple emissions,
while the second part is inextricably linked to the running of the coupling.

2.2.1 Correlated gluon emission

The treatment of the running coupling in resummations has been extensively dis-
cussed in the literature [l, 8, 9] and can be summarised essentially as follows.
Firstly one considers the non-abelian correlated double emission term together with
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the non-abelian part of the virtual (1-loop) correction to single gluon emission, and
notes that (including the ¢g contributions)

[dE] | M} oopna. (k)| + /[dkl][dkﬂ\MZ(kb ko) |0°(k — ky — ko)

2

= [dk] | M (k)| (ﬁo ln% + %) as, (2.25)

where the 63-function is (in analogy to [B0]) over the two components of the transverse

momentum and the rapidity, and p is the renormalisation scale; Gy = (11C4 —
2ny)/(127) and, in the NS renormalisation scheme, K = (%I — %Q)CA — 3ny. Thus

one can add the a2 non-abelian terms to eq. (E-81),

Fo)=1- / dK] (M2 (k, o= (12)] + M2 1oy son (k2 )]) OV ({5}, K) — 0)
- / e[k [ V22 (ki) |O(V ({5}, b, ) — v) . (2.26)

and rewrite the result, using eq. (£.29), as

1) = 1= [ e as=a)] (1+ (A + ) 0 ) ovitah 0 -
ARk, 1)) OV () ko) = 0) = OV ({3} K) = ) (227

where, in the second line, k is a massless four-vector with the same transverse mo-
mentum and rapidity as ki + ko.

Reproducing the running coupling. Let us initially just consider the first line
of eq. (B:27). If one takes u ~ Q, then since Ink?/Q?* is of the same order of
magnitude as In 1/v, one sees that the Gy term will correct the leading g (p?) In? 1 /v
contribution by an amount «o? In®1/v, also a LL contribution. The term involving
K leads to a correction of order a?In”1/v, i.e. a NLL term. One can also choose
to reabsorb these contributions into the leading term: taking pu = k;, the Gy term
disappears; furthermore defining s to be in the Bremsstrahlung (CMW) scheme
[0, B8], cs.omw = a, 315 + Kag/2m, one can reabsorb the term proportional to K.

It turns out that using as(k?) (as was anticipated in eq. (2:14)), in the CMW
scheme, is sufficient to account for the running coupling contributions at all orders
[B, i), giving an implicit resummation of terms of the form G5~ 'a”In™*'1/v and
KBy~ 2a2 In" 1 /v. The only proviso is that the running of as(k;) has to be carried out
at two-loop level, in order to properly account also for NLL terms 3,35 *a” In™ 1 /v
(n > 3).

Strictly speaking this discussion applies to the region of soft and collinear gluon
emission. Subtleties arise both in the hard-collinear and large-angle soft regions.
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In the former, the relation eq. (B.27) holds only at the accuracy of the (3 term,
but not of K. However since the hard-collinear region is single-logarithmic, the
correction K is associated with terms o In""' 1/v and so is NNLL. For soft large-
angle emissions, the problem is instead that there may be difficulties in identifying
k;: for the problems with two hard legs that we have discussed so far, one can show
that it is the invariant transverse momentum with respect to the dipole that is the
appropriate scale. However in ensembles with several hard legs (four or more), there
is, to our knowledge, no procedure for unambiguously associating the emission with
a particular dipole, and the appropriate definition of k; is ambiguous to within a
factor of order 1. This too however leads only to NNLL corrections.®

Observable’s dependence on correlated gluon emission. So far we have con-
centrated only on the first line of eq. (2.27), whose properties have been widely
discussed in the literature. The second line, in contrast, has received less scrutiny,
but nevertheless needs to be examined in some detail. Let us first consider the region
where the relative transverse momentum of k; and k; (we label this k;12) is of the
same order of magnitude as their transverse momenta with respect to the hard leg,
ki 12 ~ k;. This region of integration is suppressed by a power of ag relative to the
single-gluon emission. The question of how much it contributes to f(v) depends on
the observable: if V({p}, k1, ko) differs from V ({p}, k) by no more than a factor of
order 1 then the difference of ©-functions in the second line of eq. (R.27) is non-zero
only in a narrow band of k, where V ({p}, k) is of order v. Expressing this with ref-
erence to figure [}, one has a contribution of relative order ag in a band of width ~ 1
(in In k;/Q) along the lower edges of the shaded region. This corresponds to a NNLL
term, a?In1/v, which can be neglected. Such a contribution has been commented
before in [[7].

Suppose, instead, that the observable is such that V' ({p}, k1, ko) differs substan-
tially from V' ({p}, k), say by a factor that grows as a power of V({p}, k) — in this
case the band in which the difference of ©-functions is non-zero will have a width of
order In1/v and the second line of eq. (2:27) will contribute an amount a2 In*1/v,
i.e. a NLL term. This would mean that the ‘correlated’ part of two-gluon emission
could not simply be absorbed into the running of the coupling, necessitating a more
sophisticated resummation treatment.

We also need to examine what happens where k; and ks are collinear and /or one
of them is soft, k; 12 < k;. At first sight it seems natural to argue that since we have
an infrared and collinear (IRC) safe observable, V ({p}, k1, k2) ~ V ({p}, k) and so the
difference of ©-functions is zero. This is certainly true in the limit k; 12/k; — 0, but
there is a question of how small the ratio k;12/k: has to be in order for the difference

8We note that NNLL corrections come also from the full treatment of the emission of three
correlated partons, all soft and collinear to a hard leg. Such contributions are related to the As
term calculated in [51], 2.
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\V({p}, k1, k2) — V({p}, k)| to be negligible (say less than ¢). If the condition is for
example ky;19/k; S e where p is some arbitrary positive power, then one can show
that the second line of eq. (B.27) will contribute at most an NNLL piece.

But if the condition instead involves k;/(), or e~" in the right-hand side, for
example ky1a/k: < €P(k;/Q)Y, then the difference of O-functions will be non-zero
over a large, logarithmic integration region in k; 1> and the second line of eq. (B.27)
could lead to contributions a?In®1/v or a?In*1/v. In such a case again, we would
be in a situation where the correlated two-gluon emission effects could not simply be
absorbed into a pure running-coupling term.

While the above discussion has been framed in terms of configurations with two
emissions, one should be aware that for the all-orders reconstruction of the running
coupling, the observable should satisfy similar properties also with multiple emissions
and secondary collinear branchings.

Remarks. It is quite often taken for granted that the effects of ‘correlated’ gluon
emission can be absorbed into the running coupling in an appropriate scheme. The
general analysis of this section reveals that this is true as long as the observable meets
certain conditions — essentially that the scaling properties of the observable be the
same whether there be one or two (or more) emissions;? and that the IRC safety of
the observable for secondary splitting of a primary emission should manifest itself
for secondary splittings of the same order of magnitude of hardness as the primary
emission.

The second of these conditions especially may seem quite non-intuitive. One is
generally used to thinking of IRC safety in contexts where all the emissions (except
the one being made collinear or soft) are of similar hardnesses, i.e. there is a single
hard scale with respect to which one defines the degree of softness or collinearity.
But when dealing with final-state resummations, one introduces a second scale in
the problem, related to the (small) value of the observable. IRC safety merely states
that the observable should be insensitive to an extra arbitrarily infrared or collinear
emission — it does not specify at what scale that insensitivity should set in. It is
natural to assume that it is simply the smaller of the two scales in the problem. If
that is the case then the observable is resummable with ‘usual’ techniques. However
there are observables for which the relevant ‘insensitivity scale’ involves some more
complicated combination of the two scales in the problem, e.g. k2/Q. A concrete
example, which will be discussed in appendix [D.3, is the Geneva y,3 jet-resolution
parameter. Such observables require a more sophisticated resummation treatment,
which is beyond the scope of this paper.

9In this article we consider only global observables. For non-global observables the situation is
more complex, in that there can legitimately be boundaries in angle that delimit regions of different
scaling. One then has the condition that the scaling of the observable as one simultaneously varies
the momenta of two (or more) emissions, should correspond to the weakest of the scalings when
varying the momentum of each emission individually.
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As we shall see in the coming section, the requirements discussed here are only
the first of our encounters with a condition that we shall more generally refer to as
recursive infrared and collinear (rIRC) safety.

2.2.2 Multiple independent emission

Based on the results above, one can proceed with the calculation by absorbing the
‘correlated’ part of multi-gluon emission into the running of the coupling, and treating
multi-gluon emission as being just the product of many independent single-gluon
emissions. The result that we shall obtain here was first found in [RI]], however the
derivation given here is intended to be slightly more direct.

Given multiple independent emission one can write

fv) = exp (— Jlan |M2<k>|) > (H Jlak) |M2<ki>|> x
x O —V{ph, ki, ... kn)), (2.28)

where the first factor resums the virtual corrections, while the rest of the expression
accounts for real emissions. The coupling is always to be evaluated at scale k; and
in the CMW scheme.

An important point regarding in eq. (B.2§) concerns the manner in which one
specifies the momenta k;. In the case of a single emission we used the definition
eq. (B-3), which has the property that the k; entering the definition coincides closely
with the actual transverse momentum relative to the final Born partons (after recoil).
This is important because the dk?/k?dz/z divergence of the matrix element holds
for a transverse momentum k; relative to the final Born momenta. When there are
multiple emissions, the situation is more complicated: transverse momenta defined
relative to fixed axes, as in eq. (B.3), do not necessarily coincide with the transverse
momenta relative to the final Born partons. Since it is the latter that are of interest
to us, when we refer to a given momentum k;, it should be understood as being
defined through its transverse momentum and rapidity (or energy fraction) relative
to the final Born partons. In particular the actual 4-momentum components may
well differ depending on what other emissions are present in the event. This point,
and related issues, are discussed in more detail in appendix [J.

Q

To evaluate eq. (R.28), it will be convenient to identify the k; with the largest

value of V({p}, k;), and relabel it as k. We therefore rewrite the sum in eq. (.28)
>~ 1 [k |p2 (k)|
n=0 i=1

o] m+1
=1 +/[dk‘1] M2 (k)| % (H /[dk‘i] | M2 (k;)|O(vy —Uz‘)> , (2.29)
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where we have introduced the notation v; = V({p}, k;). The constant term, 1,
accounts for the case in which there are no emissions — because of the formally
infinite suppression associated with the virtual corrections, it can from now on be
neglected.

A technically useful step, next, is to split the sum in eq. (B.29) into two parts,
with emissions satisfying v; > ev; and v; < ev; respectively; € is an arbitrary small
parameter, which for suitable observables can be chosen such that ¢ < 1, while
Inl/e < Inl/v (in the limit v — 0 we assume that it is possible to choose € inde-
pendently of v). The reasons for these particular conditions will become clear below.
We thus write

Z% (H/[dkl-] |M2(l<;l-)|> _

Jlaipew) Yy < | ian |M2<k@->|> x

m=0 =2
o0 1 k+m+1 vy
XZ@( I1 / [dki]|M2(k:i)|>, (2.30)
k=0 i=m—+2

where we have introduced the shorthand of integration limits that apply not directly
to the k;, but to the v; = V({p}, k:).

The above separation is of interest, because we require (as part of the rIRC safety
conditions) that the emissions with v; < ev; not contribute significantly to the final
value of the observable, i.e.

V<{ﬁ}7 kh SR km+17 km+27 SR kkerJrl) = V({ﬁ}, kl’ R karl) + 0O <€p> ) (231>

where p is some positive power. So we can sum over these emissions without affecting
the ©-function on the observable in eq. (R.2§). This sum cancels the part of the
virtual corrections associated with values of k such that V ({p}, k) < evy, allowing us

to write

)= [ldb] 20 o - [ IR

y Z % <H /6:[dki] |M2<ki>|> O — V({p} ki, kmer)) . (232)

We next take the virtual corrections and split them as follows

—R(ev1) __ —R(@)—R'In *+0O(R") A dR
exp (—/ [dk]\MQ(k;)|) _ Rl ATROWRD g ,
oy dinl/v
(2.33)
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where R(v) is the single-gluon contribution to f(v), discussed in section R.1.3, and
we have expanded R(ev;) around v, neglecting the second order (R” = 97, wlt

O (aZ™L™)) term in the expansion, since it is NNLL (as long as eq. (2:39) is domi-
nated by momenta k; such that v; ~ v). The resummed distribution can therefore
be written

flo) =e MO F, (2.34)

i.e. the exponential of the single gluon result, multiplied by a correction factor F
which accounts for the details of the observable’s dependence on multiple emissions,

7= [l S (H/ e ”)

x O — V(Y ki kmsr)) . (2.35)

The function F can be evaluated directly in this form, by Monte Carlo methods.
However this tends not to be very efficient and it is worthwhile manipulating the
expression a little further. This will be useful also to help us highlight the single-
logarithmic nature of F and to eliminate subleading logarithmic contributions.

We introduce the notation k*) for a rescaled momentum & such that V ({$}, k) =
pV({p}, k); ¢ should not depend on the scaling, and the rapidity should scale as
InV({p}, k), so that the whole of the phase-space remains covered after large
rescalings.

We now need to introduce a new requirement on the observable, namely that
when all momenta are scaled in the same fashion, the effect on the observable should
be that same scaling:

VLK k) = p VB s B - (2.36)

This forms yet another part of the rIRC safety conditions.!®

The importance of eq. (2.30) is, in part, that it allows us to divide the integral
over k; into an integral over the value of vy (or rather, over p = v;/v) and an integral
over the remaining degrees of freedom of ky,

m+1
F = /dp/dk:l 11 M2(ky) \5(1n ) Rmpe 3 m' (H/ [dk:] | M2 (k: \)
X @(U - pv({p}a kl) B km-l—l)) ) (237)

where all the momenta have been rescaled by the factor 1/p and the observable’s
dependence on p has been explicitly extracted. We assume that the integral will be

10G¢trictly speaking, certain exceptions are allowed to the condition as formulated here. In particu-
lar for configurations in which two emissions are close in rapidity (a rare occurrence) the condition,
as formulated, is not necessary because the associated correction is a NNLL effect, of the kind
already discussed in section . A more general formulation of the condition is given below.
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dominated by values of p ~ 1, which ensures that the neglected corrections to the
[dk;] | M?(k;)| from the rescaling have at most a NNLL effect.

Thus one can integrate analytically over p to obtain

P / [dkluM?(kl)w(ln—) (mH INGLEC |)

({p} k17"'7km+1>) ) (238)

X exp ( R'In
v

This manipulation is of course valid only if the observable is positive definite.

That the resummation result can be expressed in terms of the product, eq. (£.34),
of the exponential of the single-gluon result and the above function F was one of
the main results of BI]. This separation is critical for our approach: all the double
logarithmic terms are collected in the exponentiated single-gluon result and can be
treated analytically, as was done in section .. In contrast the function F, which
will usually have to be evaluated by Monte Carlo methods, is single-logarithmic. To
see this let us rewrite [dk;] |[M?(k;)| as follows:

dv; CFTg
]\42 = !
/[dk M7 (k)| = Z/ v; No, (ag(Q lnvi)><

1 d : 2 d ;
Ny — [75 ey
0 14+ 22950 0 (Q)Inw; Jo 2T

a(a+by,)

where we have taken into account the NLL correction due to the running of the
coupling, &; is the emission’s rapidity divided by the maximum possible rapidity for
the given value of v, and N normalises the integral over &;:

dg

1+ “Z((iJrf 598y s Inw

. 1
£ = % No(asInw) = /0 (2.40)

a+bg vy

In changing to an integral over the rapidity fraction &;, and defining &; as in eq. (B.40)
(where we have omitted contributions to the maximum rapidity of O (1)), we have
neglected various NNLL contributions associated with the exact upper and lower
limits of the integrals. As a result, for a given value of v; the remaining part of the
phase-space integrations and matrix element has the property that it depends only
on the single-logarithmic quantity as(Q)Inv; (we recall that this is a property also
of r3,).

Let us now take the v — 0 limit of eq. (P.3§) in such a way that Syaslnv = X is
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kept constant (and so also ;). One obtains

R/lne 1 m+1 dC CFTg 1 df 27 d¢
B (S )
Z m! HZ G Ne(MBo) Jo 14 Z2809x Jo 27

({p}7k17---akm+1))’

v

d(In¢y) exp (—R' In liIT(l) v = Gu, (2.41)

where we have neglected the difference between aglnv; and aglnv. Since the scaling
that we discussed above, k; — k;gp ), is nothing but a scaling v; — pv; with & and ¢;
kept constant, eq. (B.30]) ensures that the v — 0 limit in eq. (.40]) is well defined.
Strictly, eq. (B-36) would suggest that no v — 0 limit is necessary. However there is
a small fraction (~ 1/In1) of configurations, with emissions close in rapidity (or at
the extremities of the allowed rapidity region) that are allowed to violate eq. (B-39)
and which contribute a NNLL correction to F. Taking the v — 0 limit ensures that
they disappear, so that F is a purely single logarithmic function, free of any NNLL
contamination.

There exist observables (typically those referred to as event shapes), for which a
further simplification of eq. (R.41]) is possible. They have the property that for small v
the observable is independent of the &; values (except potentially, non-asymptotically,
for & close to 0 or 1). Accordingly one can perform the §; integrations analytically
and write

R/lne o0 m+1l 2 2
F= R Zm|<HZCF5/dQ/ dgbl) (In¢p) x

i=1 £;=1

X exp (—R’ In lim V{pk k- kmﬂ)) , v =G, & =any, (2.42)
v— v

where one is free in one’s choice of the &; values to be used for fixing the k;. Typically
one takes &; far from the edges of rapidity, which nearly always ensures that any finite-
v corrections disappear rapidly, e.g. as a power of v, rather than as a power of 1/1In %

as is the case for eq. (.47)).

2.3 Generalisation to other Born configurations

The discussion so far has been limited to the case of a Born configuration consist-
ing of a single outgoing hard quark-antiquark pair. Much of the discussion carries
over relatively straightforwardly to more general cases, the main modifications be-
ing associated with the presence of incoming legs and with the colour structure of
configurations with more than two legs, both of which are problems that have been
extensively discussed in the literature.
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Incoming hard legs. Implicit in our discussion so far is that the probability f(v)
multiplies the hard cross section for the underlying Born event, cf. eq. ([.3). In
processes with incoming legs, that hard cross section is evaluated using a procedure
which factorises collinear divergences along each incoming leg into an associated
parton density function, q(z, u%). One generally chooses a factorisation scale pup of
the order of the hard scale Q).

The factorisation procedure involves an integration over collinear emissions with
transverse momenta up to scale pp, which ‘builds up’ the parton density function
at scale pp. When one places a limit v on the value of the final state observable
however, one vetoes all collinear emissions with (k;/Q)*"* > v. Accordingly the
parton distribution function is fully ‘built-up’ only to a scale of the order of Qu'/(@+b0)
The probability f(v) must therefore include a correction factor

q(z, ppo?/atto)
q(z, pu3.)

: (2.43)

such that the parton density ¢(z, u%) that was included in the Born cross section is
effectively replaced with a parton density at the new, lower factorisation scale (the
choice of Qu'/(@+%) or vt/ @+t heing of course arbitrary, since they differ only by
NNLL corrections). Above the scale ppv'/(4+%) there remains the virtual part of the
collinear corrections that would have contributed to building up the parton density
at scale pp — this however is already accounted for by the B, term in eq. (R.17).

Given that this result is simply a straightforward generalisation of that in the
well-known Drell-Yan transverse momentum resummation [, B8, F3], and that it has
been extensively discussed also for event shapes [R3, 6, R7, BY], we refer the reader
to the literature for further details.

Three hard legs. NLL final-state resummations for Born events consisting of a
hard quark-(anti)quark pair and a hard gluon have been discussed in [P3, 6, 7, Bg].
The treatment of a general observable in the 3-jet case mirrors quite closely that
given above for 2 jets. The main difference is that R(v) is built up from a sum over
three dipoles, as opposed to a single dipole: a ¢q’ dipole (¢ and ¢’ being respectively
the quark and (anti)quark) which is associated with a colour factor (Cr — Cy4/2),
and the gg and ¢'g dipoles (g being the gluon) each associated with the colour factor
Ca/2.

Schematically one can therefore write R as

R(v)= > Cdipole< > {rg(L)+r2(L) (lndg—bgln %E’f) 1

dipoles fedipole
L L Qdi ole
B, T 27T = ) In == 2.44
i <a+bé)]+ <CL) e )’ 24)
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where Caipole is the colour factor associated with the dipole. Note that for the gluonic
leg, By has a different value, B, = —(11C4 — 4Tgnys)/(12C4), since it is comes from
a (regularised) integral of the py, and p,, splitting functions rather than of the py,
splitting function as in eq. (B.14).

The presence of sums over dipoles and over their associated legs makes eq. (R.44)
somewhat cumbersome (as well as difficult to generalise subsequently). However we
can invert the order of the sums over legs and dipoles, and perform the sum over
dipoles to obtain

R(v) = g C, {w(L) +r(L) (hldfz —bIn %@) * BZT(a fbg)]

“ns(r(2). e

where n = 3 is the number of legs, and we have exploited the fact that for each
leg, Zdipolej{z} Clipole = Oy, with Oy the colour factor of the given leg, Cr for the
(anti)quarks and C4 for the gluon. The function S collects the terms that cannot be
conveniently expressed as a sum over individual legs,

InS(t) = —t|Cy IHM +2CrIn %] : (2.46)

Qqq’Q Q
One can verify that the ) dependence of In S(t) is reducible to the form ¢ CrIn @,
with Cp = ), Cy, as is necessary for R(v) overall to be Q-independent. The remain-
ing part of S accounts for the coherent structure of large-angle radiation from the
ensemble of hard legs.

Eq. (B.43) is of course only the single-gluon result. The full all-order result
needs to be obtained by following a procedure analogous to that given in section P.2
As was shown in [PJ] the decomposition into a structure of three dipoles holds at all
orders, which means that the analysis carries through essentially unchanged, the only
difference being that, for F, the sum over two legs in egs. (B.39)—(B.43) should be
generalised to a sum over three legs and Cr should be replaced with the appropriate
leg colour factor.

We finally note!? that processes such as gg — Higgs + g, which involve three
gluonic legs, or equivalently three gluon-gluon dipoles, can be treated in a similar
manner, the only difference being that each dipole is associated with a colour factor
C4/2, so that in eq. (R.4d) one needs to replace Cr with Cjy.

Four hard legs and beyond. A crucial property of the two and three-jet cases is
that there is a unique structure of colour flow for the underlying hard process — a

HWith the (formal) notation dipole D {¢} we indicate a dipole such that ¢ € dipole.
12\We are grateful to Yuri Dokshitzer for bringing this to our attention.
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single dipole in the two-jet case, and a sum over (the 3) dipoles made from all pairs
of hard legs in the 3-jet case. This means that a loop virtual correction does not
change the colour structure of the underlying hard event, and it is this property that
allows us to straightforwardly exponentiate the single-gluon term, [[dk]|M?(k)|, in
the virtual corrections in eq. (2:29).

In processes with four or more hard jets the situation is more complex, as was
discussed originally in [BY]. To illustrate the point concretely, let us consider the
process qq@ — qq, where for example the incoming ¢q pair can form a colour singlet
or a colour octet. Both the hard matrix element and the pattern of large-angle soft
radiation (and associated virtual corrections) depend on the overall colour of the
incoming pair. Additionally a loop correction (stretched say across the incoming
and outgoing quarks) can modify the overall colour of the ¢g pair entering the hard
scattering: loop corrections introduce mixing between the different colour structures,
and at all orders one needs to resum the resulting mixing matrix.

The mixing occurs only for the component of the virtual corrections that is the
counterpart of large-angle soft emission. Because of coherence, the virtual correc-
tions that are instead the counterpart of collinear emission leave the colour structure
unchanged, and so are associated with a unit matrix in colour space. This means
that most of the derivation that we have given so far carries through unchanged (in-
cluding the part dealing with the F function, which is associated at NLL accuracy
with soft and collinear radiation). The resummed result is thus of the form given in
eq. (B-34), with an R(v) defined as in eq. (B-47). The matrix structure of the problem
appears only in the large-angle soft resummation function S(¢).!3

The only case with four or more jets in which the mixing has been explicitly
calculated in the literature is that of dijet production in hadron-hadron scattering;
In S(t) consists of two parts, reflecting the fact that there is an ambiguous separation
between large-angle and small-angle (collinear) emissions,

Tr(HeftFT/QMeftFﬂ)
Tr(HM)

InS(t) = —tz Cyln % +1In (2.47)
‘

The first term is the part obtained by performing the resummed calculation as if we
were dealing with four ‘independent’ hard legs each carrying a momentum of half
of a dipole of invariant mass (J12. It contains all the dependence on our arbitrary
hard scale @) (ensuring again the independence of R(v) on the hard scale @)). The
second term gives the correction needed to properly account for the colour mixing of
large-angle radiation, as derived by the Stony Brook group in [BY] in the context of
threshold resummations (though the results apply here too). Schematically, H is a

matrix containing the matrix elements for the scattering between partons in various

13Because of this multi-channel nature of the problem, R(v) loses its direct interpretation as an
integral over the single-gluon emission probability.
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colour configurations, M is a (diagonal) matrix of normalisations for the different
(orthogonal) colour bases and I' is an anomalous dimension matrix (non-hermitian)
for the evolution between the different colour configurations as a result of the loop
contributions. Tr(H M) corresponds to the full Born matrix element for the hard
scattering. Both H and I' depend on the hard scattering angle. The full details, and
the explicit forms for the matrices are reproduced in appendix B.

As yet, analogous results for other processes do not exist in detail. A general
solution of the problem (for factorised observables), in terms of an exponentiated
matrix in colour space, has however been given in [J. From that formulation one
could envisage extracting, for an arbitrary process, the function S(¢) that provides
the large-angle single logarithmic resummation contribution to our result, eqgs. (£.34),

(2.45).

3. Presentation and discussion of master formula

The different elements and applicability conditions of the resummed prediction for
a general observable are somewhat spread out across the previous section. It is
therefore convenient to summarise them all in one location. This is the purpose of
section B It is also of use to illustrate them with some examples, notably (cf.
section B.2) a case where the analytical resummation is well known, but also one
where the applicability conditions fail to hold (see section B-3)). Finally section B4
discusses issues related to the convergence of the function F.

3.1 Master formula and applicability conditions

Let us start by summarising the applicability conditions, including some brief re-
minders of their physical origins. For the details of the notation we refer the reader
to the previous section.

e For a resummation that is to be carried out in the n-jet (n-leg) limit, the
observable should vanish smoothly as a single extra (n+1)" parton of momen-
tum k is made asymptotically soft and collinear to any leg ¢, the functional
dependence being of the form (cf. eq. (B.1)):

0\ “
V({p} k) = dg (%) e—benw) gg(gb(@) ) (3.1)

As we have seen, the restriction to this (near universal) form makes it possible
to carry out the LL part of the resummation entirely analytically. IRC safety
implies a; > 0 and by > —ay (see also [BF]). It is also necessary for the observable
to be positive definite — this is essential in order to retain the connection
between an upper limit on the value of the observable, and an upper limit on
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the momenta of any emissions. We recall that the {p} are the Born momenta
after recoil from the emission k. The functional dependence on k of the relation
between the original Born momenta {p} and the {p} is discussed in appendix [J.

e The observable should be global [[J], meaning that it departs from zero for
any emission of an (n+1)" parton that is not infinitely soft or collinear. Fur-
thermore it should be continuously global [Bg]. Roughly, this means that the
power of k; should be the same everywhere, implying a; = - - - = a,, = a. More
formally the condition can be expressed as

8111V({1Z€];,k) . olnV({p}, k) — a+tb, (32)
Olnk,

©)
fixed n(©), O dInk; fixed 20, 6(©

where 2() is the longitudinal momentum fraction (or normalised Sudakov com-
ponent) of emission k along the direction of leg ¢. The two forms in (B.9)
should be valid respectively in the soft (and optionally collinear) region and
in the collinear (and optionally soft) region. The reason for the different for-
mulations in the soft and in the collinear regions is that different forms of
deviations from eq. (B.0]) are permissible (i.e. associated at most with NNLL
contributions) in the soft large-angle and in the hard-collinear regions.

We recall, from section R.1.1], that the continuous globalness condition is use-
ful because without it, any general resummation result would need to encode
information about potential boundaries between regions with different k; de-
pendences of the observable and such boundaries could be arbitrarily complex.

The above two conditions are required in order to obtain the (analytical) single-gluon
result for the probability f(v) that the observable is smaller than some value v. For
a given emission angle, condition 1 determines the maximum allowable transverse
momentum scale; condition 2 guarantees that small changes in angle do not dras-
tically change that scale.!* In order to straightforwardly resum the result we also
need to ensure that the addition of extra emissions does not drastically change this
scale. This need appeared in various contexts in section P.J, and we express it here
through the following novel condition.

e The observable should be recursively IRC (rIRC) safe — given an ensemble
of arbitrarily soft and collinear emissions, the addition of further emissions of
similar softness or collinearity should not change the value of the observable by
more than a factor of order one (i.e. without any powers of v). The addition
of relatively much softer or more collinear emissions (whether with respect
to the hard leg or one of the other emissions) should not change the value

14 A drastic change in scale being one involving a power of v.
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of the observable by more than some power of the relative extra softness or
collinearity.

One can also express these conditions more mathematically in terms of limits.'®
We introduce momenta r;(¢;) that are functions of parameters (; such that,

V{p} ri(G)) = G (3.3)

with the condition that in the soft and/or collinear limits, ; — 0, the azimuthal
angle ¢; of k;((;) should be fixed. Each of the momentum functions x1(¢), k2((),
etc. may be different as long as they all satisfy eq. (B-3) — for example ()
might involve a scaling of xy ~ (/% at fixed rapidity, while x2(¢) might involve
a scaling of ko ~ (/@70 at fixed longitudinal momentum fraction. We also
introduce the collinear splitting of an existing emission by the notation x;({) —
{Ki,, ki, }(C, ), such that p? = (ki, + K4y )? /K% and limy, o (K, + Ki,) = K.
The conditions for rIRC safety are then that

1. the limit 1
lim =V {p}, k1 (0G1), - K (0Gn) (3.4)
should be well-defined and non-zero (except possibly in a region of phase-
space of zero measure). This expresses the requirement that the soft and

collinear scaling properties of the observable should be the same regardless
of whether there is just one, or many emissions.

2a. the following two limits should be well-defined and identical,

lim lim ~V({5}, 510G, - R Ton)s K1 (s )

Cm+1—09—0 ¥
— limy V() (5G1) o nl0) . (350)

i.e. having taken the limit eq. (B.4), the addition of an extra much softer
and /or more collinear emission should not affect the value of the observ-

able.

2b. The analogue of eq. (B.5d) should hold also for the collinear splitting of
an existing emission

lim lim iV({lﬁ}, K1(0C1),s - oy {Bigs Kiy HOG, 1), - - B (0Cn))

pn—0v—0 P

=l SV ({Ph R, 0G), i (0G)), (35D)

5The mathematical expression of rIRC safety that follows may seem more precise than the
somewhat vague description that precedes it. But as discussed in appendix E in the context of
normal TRC safety, it turns out to be non-trivial to embody the full generality of IRC or rIRC
safety using such (seemingly precise) mathematical statements.
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this, regardless of how precisely the collinear limit is taken (it can for
example involve a simultaneous soft limit of one of the daughters from
the collinear splitting). Such equalities should hold also for the case of
multiple extra emissions and/or collinear splittings.

We note that at first sight eqs. (B) closely resemble normal IRC safety —
however they actually differ critically, because of the order of the limits on the
left-hand sides. The novelty of the recursive IRC conditions is such that they
deserve to be studied and explained with the aid of some concrete examples.
This will be done in section B.3 and appendix [O.

Given the above conditions, the resummed probability f(v) that an observable has
a value less than v can be written to NLL accuracy as follows:

2F L
In f(v chl )+ (L <lndg—bgln6£)+BgT<a+b£)]

ng

. (3.6)
.4 (ﬂfz e T 12)

— 4\ (e, pu3)

+InS(T(L/a)) + InF(Cy,...,Cn; N),

where d; was defined in eq. (2-15), while r, 7}, and T were given in eqs.(Z19)—(221)
and are evaluated in appendix A1, L = In1/v, A = SyasL; C; is the colour factor
associated with leg ¢; and the hard collinear correction term By is given by

3

—— uarks
1 q )

lch - 4TRnf
1204

By = (3.7)

gluons .

The number of incoming hadronic legs is denoted by n;, and each of them is associated
with a parton distribution ¢ (x, u2) at Bjorken momentum fraction x, and, in the
Born cross section, at a hard factorisation scale u? ~ @Q%. To guarantee the NLL
accuracy of f(v) it is sufficient to use just LL DGLAP evolution to resum the collinear
(single) logarithms in the ratio ¢'“)(zy, e_%ﬂg)/q(z) (o, p2).

Process dependence enters also through the large-angle soft single-logarithms
S(T(L/a)), discussed in section P.3, which can be summarised as follows

n=2: WmS(t) = —t-2Ck In Qg (3.81)

n=3: InS(t) = {C’ In QégQég +2CFIn % : (3.8b)
o B Q12 ( tI‘T/2M6—tI‘/2)

n=4: InS(t _—thg T : (3.8¢)
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For the cases with n = 2,3, there are also purely gluonic processes (notably Higgs
production), for which one simply replaces Cr with C4 (and ¢,q’, g with g1, g2, g3);
the matrices H, M and I" in the n = 4 case have currently been calculated only for
hadronic dijet production [B§ — they are collected in appendix [B.

The last part of the general result (B.G) is the single-logarithmic function F, dis-
cussed in section P.2.7. Since it is closely connected with the third of our applicability

conditions, it is convenient to adopt a similar notation in its definition, giving

F(Ch,...,Cu A) =
ER/ 00 1 m+1 n /1 dC C[,ré. /1 df /27T d(b
hm— — ki) v 4 7 i
e—0 R/ mZO m' H &2 € CZ -/\/ﬁl()\/ﬁo) 0o 1 -+ %2)\ 0 2T
« 5(111 Cl) exp (_R/ In lln(l] V<{p}7 K1 (C1v>7 @ -y Km+1 (CerlU))) ’ (39)

where R = Y, Cyry, Ny is simply a normalisation, defined in eq. (B.40), and the
ki(v) are a shorthand for
ki(0) = k(05 4;, d5, &) (3.10)
where k(v; ¢, ¢,€) is the momentum collinear to leg ¢ with azimuthal angle ¢, and
rapidity n = asz In 1, such that V({p}, x(v; ¢, ¢,€)) = 0.
Note that in eq. (B.9), relative to eq. (B.41), we have explicitly introduced the
limit € — 0. One thus clearly sees the reason for the rIRC requirements — condition

(a) ensures that the v — 0 limit is well defined, while condition (b), specifically

eq. (B.54), ensures that one can also safely take the ¢ — 0 limit, the particular order
of the limits being dictated by the condition In % > In % > 1 that is crucial in making
the approximations that ensure that eq. (B.9) is truly single logarithmic. In many
cases of rIRC unsafe observables, the result for F diverges as one takes the limits
v — 0 and € — 0.

A further point concerns the arguments of F. As can be seen from eq. (B.9), F
depends on the rj, which were defined, eq. (B.21)), as functions of L (and implicitly,
ag). At NLL accuracy, r, actually depends only on the combination A = asfyL.
However it was natural to write it as a function separately of L and as, egs. (2:20),
(R-27]), since one might wish to compute the relevant integrals beyond NLL accuracy.
While a simple such extension might make sense for rj, it would make much less
sense for F, because of the various sources of NLL approximation that entered its
derivation. We emphasise this by explicitly writing F in terms of the NLL parts of
the 7, making it a function solely of A\ and the colour factors. In some contexts we
will use a more compact notation, F(R’). This is motivated by the fact that, for
many observables, F depends principally (or even exclusively) on the overall value
of R' rather than on the separate Cy, and A values.

Finally, we quote also a simplified form for F, corresponding to eq. (.49). This
is valid (and of considerable practical importance) for the many observables that
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have the property that they do not depend on the values of the &, i.e. for which (for
sufficiently small v) one can exchange any given set of & values with a new set &/
without changing the value of the observable:

V<{ﬁ} ) H(Clﬂ; 617 ¢17 gl) )ttty H(Cn@; ena ¢n7 fn)) =
= V({ﬁ} ) K(le};ﬂh ¢1,€1) IR ’%(gn@;Ena G, g;)) . (3'11)

In this situation, in which we refer to the observable as ‘event-shape like’, the ¢&;
integrations can be carried out trivially, giving

R 00 m+1 n d 27rd
F(Cy,... Coi \) = 113%%,2 ( e Z/ Cz/ qbz) (In¢y) x
m=0 =1 £;=1

s gl = any . (312)

X exp <—R’ In lim V{p} £1(G10), "fm+1(Cm+1v)))

v

This form tends to be numerically more convenient than eq. (B.9).

3.2 A worked example: the thrust

The thrust is one of the most widely known and studied event shape observables.
It is therefore an appropriate choice to illustrate the various elements of our general
approach. While the analysis of the thrust here presented can be obtained in a fully
automatically way, we chose to give here a manual, step-by-step derivation of all
elements needed for an NLL resummation.

The thrust is defined for ete™ events as [[{J],

> 1G - Al
Yolal

where the sum runs over all particles in the final state and the maximisation is

T = max

(3.13)

carried out over all unit vectors 7i. Physical observable definitions do not distinguish
between Born partons (denoted by py up to now) and soft/collinear partons (k;) and
to reflect this we have used the notation ¢; in eq. (B.13) to refer to a general parton.
In the 2-jet limit, 7" =1, so it is 7 = 1 — T that measures the departure from

the 2-jet limit. It can be written as
i S0 = o8tz _

where 6,7 is the angle between particle ¢ and the thrust axis 7.

Let us now work through the applicability conditions. We first need to establish
whether, for a soft and collinear emission, one can write the observable in the form
eq. (B-1). Let us define @ as the centre-of-mass energy. Then it is straightforward to
show that

(n)
7=min) %en(’” , (3.15)
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where q;" ) and n™ are transverse momenta and rapidities defined with respect to the

thrust axis 7i. This already looks somewhat similar to eq. (B.]), except that we still
have a minimisation over the direction of the thrust axis, the transverse momenta
and rapidities are defined with respect to that thrust axis, and the sum runs over all
partons, including the Born partons.

In the case of just soft and/or collinear emissions the minimisation over the
thrust is straightforward as a result of the following fact [B]: dividing the event into
two hemispheres by a plane perpendicular to the thrust axis, then in each hemisphere
the vector sum of transverse momenta qj(ln) is zero. Thus, relating the (recoiled) Born
momentum p, to the emissions in the associated hemisphere H,, we have

Z(n 7(n ~ Q
pt(z == § kt(z ) ) Dap B 1— E zi | (3.16)
1€H, 1€H,

where z; is the longitudinal momentum fraction 2|k;,|/Q of emission i and the de-
parture of p,, from /2 is accurate (as well as relevant) only when the sum over z;
is dominated by collinear partons. This allows us to write

T Q2 Z‘e?—{ ) .
1€H, T

(=1,2

To reach a form similar to eq. (B]) we need to exploit two further observations.
Firstly the angle of the recoiling Born partons to the thrust axis, Qﬁt(g") /D¢ is much
smaller than that of all but hard collinear emissions, allowing one to replace k;;" )
and ™| with k;(ﬁ) and 1 respectively. Secondly, again for all but hard collinear
emissions, k‘ @ ”7(2) > (k:ﬁf ) /Q)?, allowing one to neglect the second term of eq. (B-17).

Thus for soft (and optionally collinear) emissions we can write

N ki =1
T Yy L o : (3.18)

0=1,2i1€H,

which for a single emission is precisely of the form eq. (B1]) with
ag:bg:dg:gg<(b) = 1, { = 1,2, (319)

as anticipated at the beginning of section B

Next we need to check the (continuous) globalness conditions. Firstly one notes
that the thrust receives contributions for emissions in all directions and that a; =
as = a. Furthermore in the soft (and optionally collinear) region, using eq. (B-1§), it
is straightforward to see that

Oln7t({p}, k)

=1=a. 3.20
d1n k" (3:20)

fixed n(©), ¢p(£)
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In the region of collinear (and optionally soft) emissions, we need to revert to
eq. (BI0). Noting that at fixed z;, dn;/dInk,; = —1, and that £” and &™) are

proportional to one another, we see that both terms in eq. (B17) scale as k2,

dlnt({p}, k)

—2—atb, 3.21
o1 kO ’ (3.21)

fixed z(4), $(©)

as required.

The final condition to be verified is that of recursive IRC safety. Let us first deal
with the situation in which the momentum functions x;(v) are such that, as v — 0,
all emissions remain in the soft and collinear region. In that case we are entitled to
use eq. (B-1§) for 7 and we have that the observable is additive:

(P} 1 (0G0, o ko (06n)) = 3 T({B}, Ki(061) —vzg. (3.22)

Using this result, it is trivial to demonstrate the validity of egs. (B.4) and (B.9).

We also need to examine what happens if some of the momentum functions x;(?)
are such that asymptotically their corresponding emissions are collinear and hard.
This is possible only if their rapidities satisfy dn;(v)/dInv = —1/(a+by) — a smaller
value would mean that for ¥ — 0 an emission would become soft, while larger
values are kinematically unallowed. The corresponding scaling of the transverse
momentum is d1n k;(v) /dInv = 1/(a + by). Let us now examine how the two terms
of eq. (B-I7) behave with respect to the first of the rIRC conditions, eq. (B.4). The
first term clearly satisfies the condition, as was the case with just soft emissions.
The second term involves a non-linear dependence on combinations of momenta.
However, asymptotically, as ¥ — 0 both the numerator and the denominator come
to be dominated entirely by the emissions with dn;(v)/dInv = —1/(a+b,) (for other
emissions z; — 0 and dInky;(v)/dInv > 1/(a + by)). Since all these emissions scale
in the same fashion, k() ~ ©%/@*%) (in our specific case, k;(7) ~ /o) the second
term of eq. (B.I7), like the first term, scales as o, ensuring the validity of the first
rIRC condition, eq. (B.4)). Based on eq. (B.I7) it is straightforward to show also the
validity of the remaining parts of the rIRC condition, egs. (B.5).

Having established that the applicability conditions are satisfied by the thrust
(1) we have nearly all the elements needed for the NLL resummation. What remains
is the function F. We have seen that for soft and collinear emissions the thrust
is additive, eq. (B.29). This immediately allows one to integrate analytically over
the & in eq. (B.9). Some caution is needed however, because for hard collinear
emissions we have to account for the second term of eq. (B.I7) which breaks the
additivity. Fortunately, since as v — 0 this is relevant in an ever smaller region of &,
1-¢8S 1 75 it is associated with a NNLL correction and can be ignored. Thus we
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can take eqgs. (B.13) and (B.23) and write!®

’ m+1

dz _R'InS"mtL s
f‘l%ﬁZm,<HR’/ C) S(nge MRS (3.23)

where we have summed over legs for each emission. To evaluate this integral, we
essentially follow the now standard method of [l], introducing a Mellin transform
representation,

m+1

/ m+ dZ / dl/
—R'In E C / —R'InZ IJZ v(; 24
e =R / A e / 5 Z]/ | | e 5 (3 )

and performing the sum over m to give

, [ dZ R’IZ/ v,z //1dC e
= n v 1)) . 2
F R/ 7 ¢ 51, Jexp [ R e (e ) (3.25)

After some manipulation this can be reduced to the form

e~

v—R' Inv—R'vs _ 26
7= /27TZI/ ri+R)’ (3:26)

where ~; is the Euler constant. Inserting this expression for F into eq. (B.G), one
can then verify that the resulting resummed distribution coincides at NLL accuracy
with that originally calculated in [P

3.3 Example of rIRC unsafety: combinations of event shapes

The condition of recursive infrared and collinear safety is one of the main novel de-
velopments in this article. At first sight, certain parts of it bear a strong resemblance
to normal IRC safety, so we devote some attention to understanding how precisely
they differ. This is most easily accomplished by studying observables that are IRC
safe but not rIRC safe. We give here one simple example, and refer the reader to
appendix [D for further cases that illustrate each of the rIRC subconditions.

A rather simple class of observables that has not to our knowledge previously
been considered, consists of products and ratios of normal eTe™ event shapes. The
example that we shall consider here is V' = (1—T)Br, i.e. the product of (one minus)

the thrust, eq. (B.13), and the total jet broadening,

> G x Ty
= 5
2 Zz |G|
16The following treatment can be somewhat simplified using the form eq. (A.24) for F in ap-

pendix @, rather than eq. ) We nevertheless choose to illustrate the determination of F
using eq. (), since it is this form that will be used numerically for the automated resummation.

Br = (3.27)
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where nir is the thrust axis. Its dependence on a single emission is associated with
the following coefficients

a:2, bg:dg:gg(¢):1, €:1,2 (328)

Introducing v and &; to parametrise an emission x;(?), as in section B.1, we have!”

lnmi(@) _ (l_ be & )lnﬁ (%_é) o,
0 (3.29)

Q a ala+by)

_ & _ &
7;(0) P nov

Inv,

and for such an emission the corresponding values of 7 =1 — T and By are

In ({3}, :(5)) — G + %) o,  InBr({p}x(0)) = (% - %) o, (3.30)
reproducing 7By = .

Now let us consider the value of the observable with two emissions, x;(v) and
ko(0) (for simplicity, we choose (; = (o = 1). As long as [(§ — &) Ino| is large
then, separately 7 and Br are dominated by just one of the emissions. However
because the & appear with different signs in the thrust and the broadening, the
emission that dominates the broadening (that with the larger &;) is not the same as
that dominating in the thrust (that with the smaller &;), and the product of the two
observables behaves as follows

In(7Br)({p}, k1(0), k(D)) =~ (1 - @) Ino. (3.31)

Thus the limit eq. (B-4) is infinite and the first rIRC safety condition is not satisfied.
Though we have chosen the (; and (, of eq. (B.4) both equal to 1, the argument can
be extended more generally, and one finds that there is a double-logarithmic region
in which eq. (B.4) is infinite, corresponding to ‘corrections’ to the resummation at
order o2L*, i.e. a breakdown of exponentiation. Similar conclusions hold for a range
of other products and ratios of ‘standard’ event shapes — essentially any (IRC safe)
product or ratio of event shapes with different values for the ratio by/a.

Further examples of observables that violate the rIRC conditions are given in
appendix [D.

"Note that while this parametrisation embodies sufficient degrees of freedom for the purpose
of our discussion here, it is not sufficient for a fully general test of rIRC safety, where one should
maintain the freedom of adding an arbitrary constant to each of the 7;(7), as well as considering
the azimuthal angles ¢;.
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3.4 Convergence issues for F

We have discussed, using the concept of rIRC safety, the conditions that are necessary
for the limits and individual elements of eq. (B.9) for F to be well-defined. This alone
however does not guarantee that the resulting integrals are all finite. In particular it
is known [P]], P4, p4] that for certain observables, the resummed distribution defined
in terms of exponentiated leading and next-to-leading logarithmic functions can have
a divergence at a finite value of agL.

To see the origin of potential problems, let us introduce the probability dP(y)/dy,

dP(y) . ¥ Trss [ldG Cury, [ de; 2,
e s\ IS S [ e | =
V{p}, k1(G10), - F&m+1(Cm+1v)))

UHO U

d(In¢y)d (y , (3.32)
for a given set of {Cyr;}, of having a configuration of momenta such that the ratio
between the full observable and v is equal to some given value y (in the limit v — 0).
We can then rewrite eq. (B.9) as

(y) /
F = dy —22 1 3.33
/0 Yy Iy Yy (3.33)

Without the y~— factor, the integral is by definition convergent both at large y and
small y, since the total probability is 1. The inclusion of the y~® factor improves
the convergence at large y, but worsens it at small y. For many observables this
does not pose a problem because the value of the observable in the presence of
multiple emissions is systematically larger than in the presence of any single one of
the emissions, i.e. P(y) = [ dy'dP(y')/dy’ =0 for y < 1.

There are however observables for which there can be a cancellation between
the contributions from different emissions. The classic example is the transverse
momentum of a Drell-Yan pair — since the pair transverse momentum is given by the
recoil from all emissions, cancellations [5J, bJ] in the vector sum of emitted transverse
momenta imply that y can have values down to 0. Other examples of observables
where y can approach zero include the eTe™ oblateness [P1] and the broadening (with
respect to the photon axis) in DIS [P4], as well as the indirectly-global hadronic dijet
observables defined in [BY].

The consequences of this for F depend on the analytical behaviour of P(y) in
the neighbourhood of y = 0. Let us assume that P(y) vanishes as a power of y for
y — 0, P(y) ~ y? (as is usually the case in this kind of problem). Then the integral
eq. (B:33) is finite only for R' < R, =p

1

T

for 0<R,—R <1. (3.34)
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For the case of the Drell-Yan p; distribution, the result of the vector sum can be
loosely identified with the result of a random walk, which has a uniform distribution
in p; for p; close to zero. This corresponds to P(y) ~ y? for small y, so the integral
for F diverges for R’ > 2.

Physically the origin of this divergence is as follows. Normally the requirement
that the observable be small is satisfied by forbidding radiation — it is this that leads
to the appearance of the double logarithmic Sudakov form factor in the resummed
distribution. So a reduction in the maximum allowed value of the observable from,
say, v to a moderately smaller value v’, leads to an extra suppression in f, eq. (B.G),
of the form

ﬂU>zfuo(5)H. (3.35)

The appearance here of R’ comes from the expansion of the LL Sudakov structure
and is not modified by the NLL function F.

For observables with cancellations, P(y) ~ y* (y < 1), there is an alternative
mechanism for reducing v to v, i.e. by choosing the configurations that have the
strongest cancellations. This corresponds to paying a price of (v'/v)P. As long as
R’ < p, the cancellation mechanism simply gives a NLL correction to the Sudakov
suppression, which is taken into account in the function F. Instead, for sufficiently
small values of the observable (R’ > p), it is the cancellation mechanism that domi-
nates,

= (L) (336)

Since it is impossible for an NLL F function to transform the behaviour of eq. (B.39)
into that of eq. (B.3d), the master formula eq. (B.6) can no longer be used to represent
the full resummed prediction. This is reflected in a divergence of F, eq. (B.34). Were
one able to calculate the analogous function at NNLL one would expect to see an
even stronger divergence.

The divergence is not a specificity of our semi-numerical approach to the resum-
mation, but appears also in purely analytical resummed calculations, e.g. [B4, p4].
In such situations, current techniques for obtaining a full resummed answer usually
require that one carry out the resummation in some appropriate transform space
(e.g. b-space resummation for the Drell-Yan p, distribution). Within the context
of a semi-numerical approach such as ours, the divergence could be eliminated by
including in eq. (R.33), and elsewhere in section P.2.3, the R” (and possible higher)
terms of the expansion of R(v).

Even when F has a divergence, it may still be possible to make use of eq. (B.6)
for phenomenological applications. For observables without divergences, for R’ of
order 1, the N"LL term is suppressed relative to the LL term by a power of. Since
the LL term is of order asL? ~ 1/ag in this region, the neglected NNLL terms give
corrections in the exponent of order ag. For observables with a divergence in F, it
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seems [ that the N"LL term is suppressed relative to the LL by (as/(R. — R'))™.
As long as one stays sufficiently far from the divergence, i.e. in a region where
R, — R 2 1, the neglected NNLL corrections remain small, of order ag. When
R.—R' ~ \/og there is still a hierarchy in the series of N"LL terms, N"LL ~ ozg/Q x LL,
however the neglected NNLL contribution becomes significant since it amounts to a
correction of order 1 in the exponent. Finally when R, — R’ ~ ag, the N*LL hierarchy
breaks down completely, since all terms are of the same order.

The critical question therefore is whether the region where problems start to
appear, R,— R’ ~ ,/as, is relevant phenomenologically. If R, is sufficiently large, then
the divergence of F affects the resummed distribution only in a region far into the
Sudakov-suppressed tail of the distribution. One can show that the maximum of the
distribution of the observable, df (v)/dv, is situated at R’ ~ 1 and beyond this point,
Sudakov suppression sets in very rapidly. Accordingly if R, is somewhat larger than
this (in our experience, if R, 2 3), then the divergence will be sufficiently strongly
suppressed that it can be ignored. Normal one and two-dimensional cancellations
usually lead to R, = 1 and 2 respectively. The question of how higher values of R/,
arise and a variety of related issues are discussed in the context of a more general
treatment of divergences of F in appendix [F].

4. Computer automated expert semi-analytical resummation

In the previous sections we have outlined a well-defined procedure for obtaining
resummed predictions for a given observable. Its strength is that it is a closed
procedure — to carry out the resummation, it is sufficient to know how to evaluate
the observable for arbitrary configurations of partons.

Nevertheless, even using the results of section [, a certain amount of straight-
forward, though tedious analysis of the observable is required in order to obtain a
resummed prediction. Furthermore one needs to implement some form of numerical
integration for the determination of the function F. Given that the approach is well-
defined it is therefore natural to investigate, instead, the possibility of implementing
a computer program to follow it through.

One possible tactic would be to attempt to code the procedure for use in a
symbolic manipulation program such as Form, Mathematica or Maple. However,
even with the simplest of the observables one would quickly encounter difficulties.
For example, the definition of the thrust, eq. (B.13), involves a maximisation over the
direction of a projection axis. Such a maximisation is a highly non-trivial operation if
it is to be carried out entirely analytically, in closed form, by a symbolic manipulation
program.

We choose instead an approach inspired by the field of Experimental Mathemat-
ics [p], and that incorporates also some characteristics of expert systems [p7. The
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observable is coded as a computer subroutine,'® which is then called with a range of
partonic configurations. By taking the soft and collinear limits for the emissions it
is possible to obtain the information required for the resummation, cf. section B.1
This analysis is carried out for a single Born configuration. The general approach
and certain specific details are discussed in section [L.]. Issues associated with the
subsequent integration over Born configurations are then considered in section .3,
finally in [£.] we discuss applications of CAESAR.

4.1 The analysis

The study of the observable for a given Born configuration follows the sequence out-
lined in the flowchart of figure Pl The overall structure should be self-explanatory, so
rather than proceeding with a step-by-step explanation of each entry of the flowchart,
we will discuss (section [L.1.1]) issues that are common to many parts of the analysis,
and then concentrate on points that require more detailed attention, that is tests of
rIRC safety (section [.I:9), the general determination of F (section f-1.3).

4.1.1 General considerations

Many of the limits that arise in section are approached accurately only for ex-
tremely soft and collinear emissions. Rounding errors often make it impossible to
correctly calculate the value of an observable in such limits using standard double
precision arithmetic. Therefore an essential tool in the numerical analysis of the
observable is multiple-precision (MP) arithmetic.

We have chosen to use the MP arithmetic package by David Bailey [B7. It
exploits Fortran 90’s operator overloading abilities to provide transparent access to
nearly all operations (including special functions) on MP quantities, so that one can
write normal Fortran 90 code, with only minimal changes needed for it to work in
multiple precision.”

The user is expected to provide a subroutine for the observable, and to specify a
configuration of Born momenta, {p}, for which the resummation is to be carried out.
This is the starting point for the flowchart of fig. . Given these inputs it is possible
for the program to check the applicability conditions of section B.I], to determine
the various leg coefficients in eq. (B.]) and to calculate F (as well its expansion
coefficients, needed for matching).

We find it convenient to exploit a combination of deterministic and Monte Carlo
procedures. The former are used to help formulate hypotheses, the latter to test
them. For example, for the coefficients in eq. (B.1) the program uses a restricted set

181t is to be kept in mind that there are observables for which this requires some thought!

9We have added functionality to this package, extending its operator overloading to many com-
mon array operations that were not supported, and introducing a basic template mechanism anal-
ogous to that of C++, making it possible to write routines in unspecified precision and have them
converted to explicit double-precision and multiple-precision versions.
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Figure 2: Flowchart of analysis for automated resummation. See main text for details.

of momentum configurations to establish the probable values of the ay, by, dy. It then
verifies that those values hold for a large number of further (randomly generated)
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configurations.?

Sometimes the hypotheses that are formulated concern functions rather than
just numbers. This is the case for g,(¢) and F(R'). For certain observables these
functions have simple analytical forms, and that information can be of value.

For example, quite often g,(¢) is just an integer power of sin(¢) or cos(¢), and
this can easily be established. In the remaining cases g;(¢) is tabulated over a large
number of points so as to have an accurate representation for it.2! One could of
course use the methods of experimental mathematics [Bf] to expand the range of
functions that one tests for.

In the case of F, fully analytical results can be obtained for observables that are
additive, like the thrust. Such observables satisfy the condition (cf. eq. (B:23))*

VUHPY ko k) = ZV({ﬁ}, k). (4.1)

Given this property, the derivation of F closely follows that for the thrust, and
one has the general result eq. (B:20), alleviating the need for F to be calculated
numerically.

As mentioned above, once a hypothesis has been formulated with the aid of
deterministic methods, it is checked using Monte Carlo methods. In such a check,
two parameters should be supplied by the user: the number of random tests and the
accuracy to which they should be satisfied. As is always the case in any ‘experimental’
verification of a hypothesis, it suffices to have a single negative test result to falsify the
hypothesis, whereas formally an infinite number of positive tests is needed in order
to verify it. In practice, for the various observables that we have studied (about 50),
we find that on the occasions when a hypothesis is falsified this occurs after at most
a few hundred test events, and usually after just a few test events.

Concerning the accuracy (g) of the tests, again formal certainty regarding the
tests can only be achieved in the limit of arbitrarily high accuracy, € — 0. For small
but finite ¢ we believe that an undetected violation of a condition at a level below
the accuracy ¢ will translate to a relative incorrectness of the logarithmic structure
of the resummation that is bounded by a positive power of ¢.

20This Monte Carlo check simultaneously finds a region of the n-k; plane that is sufficiently
asymptotic for the rest of the analysis (including a determination of the ¥ used in various equations
of section B.1)).

210ne current technical restriction concerns possible zeroes of gy(¢). Recall, eq. (@), that we
define momenta k(v) by the requirement that V({p}, x(v)) = v. If g¢(¢) has a zero at some ¢ = ¢y,
then in the limit ¢ — ¢o, the transverse momentum of k(v) can grow large (i.e. no longer soft and
collinear). Cuts on ¢ can be used to circumvent such problems, but only given good knowledge
about ¢y and the value of dlngy(¢)/dIn(¢ — ¢p) in the neighbourhood of ¢y. To simplify the
determination of this information, we currently require that if g,(¢) has zeroes, they be either at
¢=0,7or ¢=m/2,31/2.

22Recall that the momenta {p} are defined as the recoiling Born momenta after all emissions, so
they differ in the Lh.s. and r.h.s. of eq. (@) See Appendix Q for more details.
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There are certain tests where good accuracy is critical. For example it is impor-
tant that the coefficients a and b, be well determined, because any uncertainties in
the a and b, will be magnified by the values of In Q/k; and 7, which can be large. In
such cases we typically insist on having close to the full accuracy that can be repre-
sented in double-precision (used to store the values of the coefficients). In many other
situations high accuracy is less critical and leads to an unnecessary slowing down of
the program. For example for hypotheses involving multiple emissions (such as the
tests of rIRC safety, or exploration of the structure of any divergences of F) we find
that an absolute accuracy requirement of ¢ = 1073 (on In V), reliably establishes the
veracity of the hypotheses.

Given that we are using MP arithmetic it may seem surprising that we should
have such a ‘poor’ accuracy requirement. Schematically this can be understood by
noting that there can be effects that manifest themselves through corrections that
scale as 1/InV. The number of digits of internal arithmetic precision that is needed
then scales as 1/e. We note though that there is room for going to higher accuracies
than are currently used, since run times for the full analysis (except the computation
of F) are of the order of a few minutes.

4.1.2 Tests of rIRC safety

The rIRC tests are among the least trivial in CAESAR, essentially because of the
double limits in eqs. (B.-4,B.9).

We use a randomly generated sample of events and require that the conditions
hold for each event. An event is built up first by choosing the number, m, of emissions
(currently we take 2 < m < 4). Then for each emission i one specifies the leg, ¢, to
which it is closest, its azimuthal angle, a value for the (; and the form of the function
ki(C). The latter is chosen such that a variation of ¢ corresponds to following a linear
path in the n, Ink; plane. Asymptotically (v — 0), any other functional form will
either be nonsensical (e.g. outside the allowed phase-space) or else approximate a
linear path.

The first of the rIRC conditions, eq. (B.4), is tested by examining the value of

the ratio . ) )
y<7_);C17---7Cm) _ ({p}v’%l(clv)_v'"7/{m(cmv)) ’ (4.2)

v

for two widely separated values of In1/v. If the difference between the two results
for Iny is larger than the accuracy requirement e, then the two In1/v values are
increased further to establish whether a limit is being reached for y. This procedure is
continued until the available (multiple) precision is insufficient to correctly calculate
the observable. If at this point y has still not reached a limit, the observable is
deemed to fail the first rIRC condition.

Having found a region that is asymptotic with respect to rescalings of v, one
establishes the change to Iny on removing emission m. If the effect is larger than
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e, then one determines the threshold value (, ot such that if (, > Gy erit, then
we have |Iny(9;C1, ..., Gn) — Iny(0;C, ..., Gno1)| > € and if (< Guoait, then
| Iny(v;C1y vy Gn) — Iny(0;Ch, -0, Gnot)| < €.2 If no value can be found for (et
then this is usually an indication that the observable is IRC unsafe (this should not
however be considered as a complete test of IRC safety). If a (y cni¢ is found, then
a second value of In1/9 is taken and (et is redetermined. As for the first rIRC
condition, the two In1/v values are both increased until ¢, o;it becomes independent
of v. If this does not occur within the accessible range of In1/v, the observable is
deemed to fail on eq. (B.5d) of the rIRC condition.

A similar procedure is used to check eq. (B-5H), it being a critical value of p that
is searched for.

4.1.3 Efficiency considerations for calculating F

The slowest part of our automated resummation approach is the calculation of F.
This is because it is necessary to carry out a separate Monte Carlo integration for F
for each of a range of values of R’. The issue of speed becomes particularly relevant
if one has to use high-accuracy multiple-precision arithmetic in the evaluation of the
limits in egs. (B.9), (B-19).

There is of course a trade-off between speed and the accuracy of the final result.
The determining factors for the accuracy are the number of Monte Carlo events used,
the non-asymptoticness of the result due to the use of finite ¢ and v, and rounding
errors in the calculation of V.

The first thing to be established in the numerical calculation of F is a suitable
value for € in egs. (B.9) and (B.13), which formally should be taken to zero. One speci-
fies some target accuracy € (note that € and ¢ are different quantities). Schematically
one sets the value of € such that for most configurations, eliminating those emissions
with (; < € changes the value of the observable by less than some fraction of e.
In practice rather than explicitly probing the observable to determine e for a given
e, one determines the integer power ¢ such that for (almost) all double-emission
configurations

0(1 = ¢M)T < V{p}, k1 (0), k2 (CD)) < (L + ¢V, (4.3)

and then uses this to set € as a function of ¢, € < €7/¢°.

Next one should choose a value of ¥. The easiest situation is that for ‘event-shape-
like” observables, for which the integration in the &; can performed analytically and
one can use eq. (B.19) for F. Typically in this situation the & — 0 limit converges

23This particular formulation is necessary because y may be discontinuous with respect to vari-
ations of (,,. Currently no explicit check is carried out for the existence of multiple solutions for
Cm,crit, it being assumed that if any one of these multiple solutions is ‘dangerous’, it will be found
as a result of the Monte Carlo sampling of {; values and functional forms for s;.
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rapidly — errors due to the use of a finite value of v are essentially associated with
corrections to eq. (B.1), which usually vanish as a power of the softness/collinearity
of the emissions. It is therefore possible to evaluate F with reasonable accuracy
without going to extremely small values of .

Depending on the details of the algorithm used to calculate the observable, there
may even exist a range of v in which one can use (fast) double precision arithmetic to
evaluate the observable while maintaining small errors both from numerical round-
ing and non-asymptoticness. The freedom to choose an arbitrary rapidity for each
emission is useful in this respect. The simplest choice would be to take some arbi-
trary fixed rapidity fraction £&. However one finds that both rounding errors and the
degree of non-asymptoticity can depend substantially on a non-trivial combination
of rapidity fraction, azimuthal angle and value of (v. Thus to minimise the combi-
nation of rounding and non-asymptoticity errors it is convenient, for each emission,
to choose the rapidity fraction most appropriate to the specific ¢ and (v, as stored
in a lookup table calculated once for each observable (at the stage ‘F calculable in
double precision?’ in the flowchart, figure f).

There are also (event-shape) observables for which there is no range of v in which
both (double-precision) rounding and non-asymptoticity errors are simultaneously
small enough. In such cases it is necessary to resort to multiple precision, though
usually a fairly moderate number of digits is sufficient to keep the rounding error
< € in a region where the non-asymptoticity error is also smaller than e.

Observables for which one cannot integrate analytically over the &; tend to be
more challenging. This is because for finite v there can be corrections to F (associated
physically with NNLL contributions) originating from regions where two values of &
are close, | — &;|Inv < 1. After integration over the &;, such corrections scale as

(In1/9)7!, i.e. much larger non-asymptoticity errors than in the case of event-shape-
1

Y

like observables. Accordingly to obtain an accuracy € one should choose In1/v ~ e~
with a correspondingly large number of digits being needed to avoid rounding errors.
In such situations, reasonable results for F can require up to a hundred days of
CPU time on a modern processor (though on today’s large computing clusters this
typically corresponds to a few days’ real time). The procedure can be rendered more
efficient by using correlated events with different values of v, from which one can
estimate the small corrections to F due to non-asymptoticity with far fewer events
than are needed to evaluate F itself.

4.2 Integration over Born configurations

The discussion so far has been based on the study of a single Born configuration with
a given structure of flavour indices and associated colour factors. For a Born process
such as ete™ — 2 jets, DIS 1+1 jet, or Drell-Yan production, the Born kinematics
(normalised to the one dimensionful scale) and associated colour factors are unique,
so the result as given so far is sufficient to obtain a full resummed prediction.

— 46 —



In general, however, this is not the case, notably when the Born process involves
three or more (n) hard legs. In such a situation one has to select a subset of events
such that there are always at least n hard jets, using some cut, such as the function
H(q1, g2, - ..) introduced in section [[.L]. Then, eq. ([.3), one has to integrate over
all Born configurations B that satisfy the cut, summing over hard scattering chan-
nels 6, and evaluating the resummation individually fzs individually for each Born
configuration and scattering channel.

In principle, for each B and d, one should redetermine all the inputs to the master
formula for f, i.e. the a, by, dy, go(¢) and F (and the applicability conditions). This
would be rather slow, especially the redetermination of F. Fortunately, for most of
the cases that we have examined it is only the d, that have any dependence on B
(modulo permutations of the indices ¢, to be discussed shortly).?* This means that
the analysis of the observable can be carried out in full for just a single momentum
configuration B, and then for each new momentum configuration one redetermines
only the dy, which is a straightforward procedure.

The exact property that is required is that for each Born configuration B, there
should exist a permutation function® Py : {¢} — {¢'} such that

e B = Qg Bt 5 (4.4a)
bep = b . s (4.4b)
9e8(®) = 9o B, (0), (4.4c)

and furthermore

V<{p}87 H(Clﬁ; 617 (bla £1>7 ] H(Cm@; ema ¢m7 fm)) =
= V<{p}8ref7 H(Cﬂ_}; 6/17 ¢17 £1>7 ] H(sz_]; g;w ¢m7 fm)) . (44d>

Given these conditions it is straightforward to show that the function F to be used
is

fg(cl, ey Cn; )\) = "TBref (Cpg(l), ey CPB(TL); )\) s (45)

where the {Cy} are the colour factors for the legs of B. Accordingly the problem
of evaluating F for an arbitrary Born configuration reduces to that of evaluating it
for a single reference Born configuration, but for all permutations of colour factors.
One should of course also consider that different sets of colour factors may arise for
different Born subprocesses.

With this approach, the calculation of the integral over Born configurations,
eq. ([[.3), now involves the following steps: for each configuration B, one should

240ne can of course design observables for which this is not the case, for example D3 in the
three-jet limit, where D is the D-parameter [@] and ys is the Durham three-jet resolution.

25In defining it in practice, one should specify some convention for attributing the index £ to a
given leg — the one that we use is that when outgoing partons have different flavours, a given index
{ is always associated with a parton of the same flavour, independently of B.
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find, if it exists, a permutation such that egs. ([.4)) hold, determine the d;, and then
compute the resulting distribution fgs(v). This is still a moderately slow procedure,
because establishing the existence of a suitable permutation involves probing the
observable with a number of test configurations of soft and collinear emissions for
each B.

So, as a further simplification, we make the additional assumption that a common
rule holds for determining the permutation for a wide range of observables. This rule
differs according to the process:

e For ete™ — 3 jets we choose the permutation that ensures EPB—I(l) > Est_l(?) >

e For DIS 2+ 1 jet events we permute only outgoing legs, such that PpyisP1 <

e For hadronic dijet events we permute only outgoing legs, such that p Prl(3)P1 <

While this is not a general solution to the problem of determining Py, we find it to
be adequate for the whole of range of observables that are normally studied. It is of
course mandatory that one tests its validity. This is done for a random (sub)sample of
Born configurations during the (Monte Carlo) evaluation of the integral in eq. ([.3).

4.3 (Meta-)Results

It would be natural at this point, having given an extensive discussion of the ba-
sis and implementation of CAESAR, to illustrate its capabilities with some example
resummations.

One of the main potential applications of CAESAR is the resummation of event-
shapes and jet-rates in hadronic-dijet production. With the aid of resummed pre-
dictions (and recent progress also in fixed-order calculations [, F9, p0]), event-shape
and jet-rates studies at hadronic experiments should allow studies of a number of
interesting issues, related for instance to the underlying event, or, from a purely
perturbative point of view, to the non-trivial structure of interference between large-
angle soft emissions from different dipoles, a characteristic of events with four or
more jets.

A first resummed result for hadronic dijet events was given in [£2], for a global
variant of a transverse thrust. We are aware of only one experimental measurement
of a hadronic dijet event shape distribution, [G1], also a transverse thrust, but with
a non-global definition — it is therefore beyond the current scope of our approach.

Compared to ete™ environments, the issue of globalness for observables in had-
ronic collisions turns out to be particularly critical, because limited detector reach at
forward rapidities restricts the measurement of the properties of the beam remnant
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jets (which form an integral part of any global measurement). Nevertheless, it turns
out to be possible to define various types of observables, specifically designed to be
global but hopefully still measurable at hadronic colliders.

The presentation of a systematic definition of classes of hadronic dijet event-
shapes, together with sample output results for the analysis and the resummation
from CAESAR, is naturally accompanied by a discussion on how complementary prop-
erties of various observables can be tuned to address various aspects of the physics
of hadron colliders. Accordingly, rather than present example resummations here,
we have chosen to devote a second, companion article to the subject [BY].

Additionally some illustrative examples are given in appendix [§ for the BKS
(or angularity) continuous class of ete™ observables [P3, B2, and also for a new
alternative class that is better behaved with respect to variation of the continuous
parameter that defines individual elements of the class. Many more examples, in a
range of hard processes, are available from [[].

5. Conclusions and outlook

In this article we have presented a detailed derivation of a master formula for NLL
final-state resummations, and discussed the properties that an observable has to fulfil
in order for the approach to be valid — principally continuous globalness and a novel
property, recursive infrared and collinear safety. We have also outlined the elements
that were needed to construct a computer program, CAESAR, that can determine,
given a subroutine for the observable, all the observable-dependent inputs to the
master formula. It will be made public in the near future.

The breadth of results already obtained with CAESAR, presented elsewhere [BY,
1)) (and in appendix [d), testifies as to the power of the approach. Therefore, rather
than review, once again, the achievements of the method, we discuss here briefly the
scope for future work.

The most immediate direction for future work is that of phenomenological appli-
cations, including the study of hadronic dijet event shapes discussed in [BY]. All such
studies require matching to fixed order predictions and in processes with three or
more jets, certain new conceptual issues arise [[3] compared to the well understood
two-jet case [J], related to the identification of separate hard-scattering channels in
the fixed-order calculation.

More generally, it would of course be of interest to extend the approach to
non-global observables, which are often easier to measure than global observables,
especially in processes with incoming hadrons. Partially analytical resummations
exist for a range of non-global final-state observables ([, B4, b3, 64, b3 in the large-
N, limit and advances are also being made beyond leading N, [Bf]. Relative to the
global case, the additional complication within an automated approach comes from
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the need to treat boundaries that separate regions with different sensitivities to the
transverse momenta of the emissions.

Yet another possible extension includes the case of final-state observables in
processes with heavy quarks, for which few resummed results [67] exist as yet.

Further progress could also be made for observables that involve cancellations
between different emissions (for example due to vector transverse momentum sums),
for which the resummation applies only up to some finite value of agL. For a number
of observables (e.g. [B4]) the breakdown is in a sufficiently suppressed region that it
can be ignored, however this is not always the case. Beyond, one must currently
resort to standard analytical methods, based on appropriate integral transforms, as
in [B]. The methods developed here already make it possible to identify many of
the most common cases of such observables. A full solution to the problem might
conceivably make use of that information to actually carry out the resummation.

Some final comments relate to recursive infrared and collinear safety. For many
years it has been known that there are observables for which double logarithms do not
exponentiate, i.e. the resummed series cannot be expressed in the form eq. ([.4). One
of the significant developments made here is the formulation of a sufficient condition
for exponentiation, namely rTRC safety. There are a number of analogies between
rIRC safety and normal IRC safety: for example, just as IRC unsafe observables can
lead to NLO predictions that diverge as an infrared regulator is taken to zero, rIRC
observables often have an NLL F function that diverges as infrared regulator is taken
to zero. However, while the general consequences of IRC safety are well understood
— it is the necessary and sufficient condition for an observable to be calculable at all
fixed orders in perturbation theory — rIRC safety remains somewhat more nebulous.
One reason for this is that it is not yet clear how to formulate an approach like ours at
all logarithmically resummed orders. Only within the framework of such a systematic
approach would it then have any sense to make an analogous statement about rIRC
safety.
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A. Analytical ingredients

In this section we collect the analytical formulae needed to evaluate (B.§) and its
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order-by-order expansion. The knowledge of the latter is needed when matching
resummed predictions to fixed order calculations, a step which we leave for a future
work. We also present some alternative representations of the function F, which are
more convenient for analytical evaluation of the function.

A.1 The radiators

It has become standard to give all resummed quantities in terms of A = agyL, with
as = a,gg- We consider first the function 7, defined in (B.I9), and split it into a
pure LL term and a pure NLL term as follows, r¢(L) = L1y ¢(asL) + ros(asl). In
terms of A\ one then has, for b, # 0,

1 2\ 2\
L) = oI (1-22) - o\ In(1—
r1e(asL) RN ((a A) n( a) (a+ by A) n< a—i—bg)) ,
1 K 2 2
ro(asL) = b [Fﬁg <(a—|—bg)ln <1 - a—l—bg) —aln <1 - ;))
Ym2(1-22) - n?(1—
+27Tﬁ8’ 2 a 2 a+ by

+aln (1 - %) —(a+b)hn (1 - a?:\l%))} |

(A.1)
where the first two coeflicients of the beta function are
11C 4 — 4Trn 17C% — 5C sn; — 3CEn
Gy = —4 Ui iy B =—4 A;” = (A.2)
127 24w

and K is the constant that relates the physical scheme of ref. [L] to the ¥s scheme:

67 w3 5

These expressions have a finite limit for b, = 0:

1 2\ 2\
ri(asL) = Y <; +In (1 — ;)) :

K 2\ 2 A
ra(asl) = pEoTE <1n (1 — ;) toT Ty 2)\) (A.4)

In(1—22)42)
_ ﬁl 11112 1_% _'_n( a)_'_a )
23\ 2 a 12

a

The function T'(L) in (.20) is given by

T(L) = ———n(1-2)) (A.5)

TP0

— 51 —



and the function r;(L) can be obtained from (P.21]). We give here only its (finite)
limit for b, = 0:
2 1 A

T‘/(L):?ﬂ_—ﬁo@, bgzo (A6)

Finally, a change in renormalisation scale from () to p results in a change in ry, as

follows
2

r“—>r“+)\ln%( — i) . (A.7)

A.2 The expansion of F to order R

One can consider F as an expansion in powers of R’,

FR)=1+ i FRP. (A.8)

p=2

The first term in the expansion, F; is relatively simple, and can be written as follows

ff‘(iﬁ)_ (HZ/ " a—i—be / &/%dgbl)

5(1n Cy) In tim LU2EA1G0) K2(G0)) gy

v

For observables that belong to the event-shapes class, the integrals over the &; can
be evaluated analytically and just give 1. For additive observables,

2

B=- dé? In(1+G) =~ (A.10)
In arriving at eq. ([A.9), various manipulations have been carried out assuming rIRC
safety, as was the case also for egs. (B.9) and (B.I9). If one wishes to give a quan-
titative interpretation to F» when investigating non rIRC observables (specifically
for double logarithmic violations of exponentiation), one is not entitled to carry out
those manipulations and rather one should explicitly derive F, from eqgs. (R.31]) and
(B.33), as a function of the base scale v at which one evaluates R,

Fo(v) = % (fzn: a+bz ) (HZ/ dfl ackibz hllnC; / /% d@)

x (0(v = V{{p}, m1(G0), 2(G0))) —O(1 = ()O(1 = () - (A.11)

It is simple to verify that for rIRC safe observables it coincides with eq. (JA.9) in the
limit v — 0.
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A.3 The fixed order expansions

In order to compare resummed results with fixed order calculations, it is useful to

know the fixed order expansion for f(v) in eq. (B.g). We choose to write f(v) in the

form?26

a«H)[ oo n+l
(o) = FUR)S(T(L/a) H‘-’ e exp{zzanmanm}
(A.12)

n=1 m=0
oo 2n
at L™
=2 > Hwail

n=0 m=0

with, as usual, L = In1/v and as = a yg/(27). In the first line of eq. (A.13)
we isolate the contributions to f(v) that can be straightforwardly written as an

exponential, while the second line defines H,,,, the coefficients of the expansion of
f(v) in powers of s and of L.

In order to derive the explicit form for G, we need the expansions of ry ,(L),
roe(L), 7,(L) and T'(L):

o0

A(4mBo)" L L [ 1 1
nell) =2 n(n+1) b (J‘(Hbg)n)’

n=1
A(47 o) 2@ L (1 1
=K —
TQZ 22 Tng (an—l (a+b€)n—1)

A7 By) 3" L 1 1
+327r2612< WﬁO)nbza (Ve +¥(n) — 1)( - ) ;

n—1 n—1
s a (CL + bg)

- 4(47Tﬁo)n71 —nrn
r(r) - 3 AT
n=1

o = A(drp)tanLt (1 1
0 =3 (G )

(A.13)

Notice that the above expressions have well defined b, — 0 limits, which read:

N 44T o) e L , >~ 447 ) ran L
r1e(L nz:l CEY Tz(L):; gt )
4 Bo)"2as" L (n — 1
ro(L) = K Ao )" " L7 n — 1) (A.14)
— na"
(476" 3 agL™(n—1
+ 32723, Z So) — ( )(7E+¢(n)—1)-

26This differs from the convention adopted in [f] in which the whole probability f(v) is written
as an exponential.
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Substituting (A.13) (or (A.14)) in (B.4) we are able to extract the coefficients
Gpm- Here we report only the terms that we are able to control at NLL accuracy

up to second order in ag, which correspond to the current accuracy of fixed order
calculations (the expansion to higher orders being just a trivial exercise).

Gho = _g aiébg

G = — ;Cg (ffsz + mibé) (mdg —bln %Ef)) :

Gas = —8;—0?20 ;Cz% : (A.15)
Gopy = —87;—50 ch% (mdg —beln %Ee)

Cng 2K Cg
-8 — - :
7T50;<a+bg)2 a = a+b

The last step is to expand also F, S(T'(L/a)) and q(@(ef%,ug). The expansion
for F can be found in eq. (A.§), while

Sty =1+ 81", (A.16)
p=1

where the coefficients S, can be easily extracted from eq. (B.§). In particular, for
n < 4 we have simply S(t) = exp{S; t}, with

n=2: 5 =-2CF In Qg?q/ , (A.17)
quQq’g Qqq’]

n=3: S=—|Caln—""=>+2CpIn—| , A.18

1 l a5 0 Fin=g (A.18)

while for n = 4 the situation becomes more complicated and we have

Q12 1Tr(HI'TM + HMT)
= — 1 S
51 Zg Celn =5 =3 Te(H M) !

2
;
Sy = % (; Celn %) + % (; Celn Qéz> Tr(ng]gf{Lj;IMF> (A.19)
1 Tr(H(TH2M + 2(HTTMT) + HMT?)
T3 Tr(HM) ’

with the matrices H, I' and M reproduced in appendix B
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2L
In order to compute the expansion for ¢¥)(zy, e+ pu2) we use the following

notation,
qu(, 112) .%%>£ < Pyy(x)
(0, 1 0 PV
g(x, 12) Py (x) Pyg(x)

where Pi(jo)(x) are the leading order Altarelli-Parisi splitting functions, taken from

ref. [7], which we reproduce here for completeness:

PO () = Cp <;j§>+ 25(1—:5)] ,
P (@) =T [#* + (1 - 2)] |
PO() = Cp H(lx_ ) } : (A.21)

)

We also make the identification ¢(¥)(zy, u2) = q; (¢, p2), with i the flavour of hard

_ 20
parton p,. To NLL accuracy, one can express ¢'“(e” “#% u2) in terms of the function
T(L/(a+ b)) as follows

2 t L
¢ (e, v p2) = |15 O)} q“)] (zepl), =T ( ) . (A22)
7 a + bg
where we have used the notation
9 Ydz x 9
[P ®dqli(z, py) = — Py (;) Q;(2, p7) (A.23)

to indicate both matrix multiplication and convolution in x space. The expansion
of q(@(e_%u?) in powers of T(L/(a + bg)) can be then trivially obtained from
eq. (A.29).

If one wants to compute q(g)(efﬁ,uﬁ) with a NLL DGLAP evolution, one should

modify the expansion accordingly. Of course the differences in the two treatments of
the evolution would appear only at NNLL level in f(v).
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All these ingredients can be merged together to obtain the coefficients H,,,
defined in ([A.19), given here again only to second order in aj:

4 2 [P®qY
Hi,=G Hy,=G s E
12 12 11 1+ g 2ot q© )
1 4 2 [P®qY;
Hy = -G Hys = G —-S51 — -
21 = 500, 23 = Gaz + G2 ( 1+ aSl atbh O ;

1 8w
H22 = éGll —|— ClG12 + G22 + ﬁo

2 .
16F, c, 4\~ 2 [P®eqY
+ a? (; a -+ bg) <G11 + a51> Z a—+ by q®

4By [P®qY) i Z [P ®q“]; 2 [Poq®)
(a+bo)?  q a+ bg qr) a+b, ¢

=1 01 la<ty

V4
Ien( 2 V' [PePqY
24 \a+b q®)

16 4
S + —252 + _SlGll
a a

_|_

(A.24)

Analogous expressions can be obtained for the higher order coefficients.

A.4 More analytically convenient forms for F

From the point of view of analytical evaluations of F (not that this should really be
necessary!) it can be convenient, rather than using eqs. (B.9) and (B.1I3), to resort to
the following equivalent forms. Retaining explicit explicit &; integrations, we have

Ly dG;  Cer, ' dg " do,
}—_15%6 m' HZ/ G N, )\/ﬁo)/olJr“Jr((lig’)b‘l)\/ 2n

6 (1 VUL G0l Ga) -

while for observables where &; can be integrated out analytically, the result is

eSS ([ [ 7).

Y- <1 . QI}L% V({p} k(¢ 1’0)1; R Kum(Cmv))) ’ ¢ =any. (A.26)

It is to be kept in mind however that for numerical evaluations these forms are
considerably less efficient than egs. (B.9) and (B.13).
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B. Soft large angle contributions for n =4

We reproduce here the explicit expressions for the matrices I', H and M needed to
compute the function S which accounts for soft large-angle emission for processes
which involve two incoming and two outgoing hard partons at Born level.

All the matrices are taken from [Bg], with slightly changed conventions. First
our definition of the I'-matrix differs from the one in [BY] in that we extract a factor
ag/m. Furthermore, the normalisation of H and M is fixed here in such a way that
the Born partonic cross section for a given (partonic) subprocess 0 (with flavour
content ij — kl) is given by:

dos _ m§Tr<HM) 1

A

dt 5 1+,

(B.1)

Here 1/(1 + &) represents the needed symmetry factor for producing two identical
particles, § = (p1 + p2)?, and £ = (p; — ps3)?. A comment here is in order concerning
the labelling of parton momenta. In the whole section all hard parton momenta
are labelled according to the flavour. For instance for the subprocess q¢ — qg,
p1 and py will denote the momenta of the incoming quark and gluon respectively,
while p3 and p, will denote respectively the momenta of the outgoing quark and
gluon. In cases such as q¢ — qq, in which such a labelling does not lead to a unique
parton identification, an arbitrary choice will be performed, which of course will
have no influence on all physical quantities, such as the cross section (B.]]) or the
soft function (B.47).

All the matrices I', H and M can be expressed in terms of the Mandelstam
invariants 8, t and @ = (p; — p4). It is also convenient to introduce

~
A

T=In(—)+ir, Uzln(_?u)+i7r. (B.2)

For an extensive discussion on the physical meaning of all these matrices, the reader
is referred to [BY]. Here we collect only explicit results for all possible partonic
subprocesses.

The results we present here correspond to a particular choice of the colour bases
for each subprocess, which we will explicitly indicate, denoting with r; the colour of

parton p;.

® qq —qq
For this subprocess we choose the t-channel singlet-octet basis
1 = 57"17’357’27’4 5

1
2N,

(B.3)

1
Co = 57‘17’357'27'4 + 557‘17‘257‘37'4 .
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With this basis the expression for H reads

C% Cr
2 Nz X1 Nz X2
H=— [N ) (B.4)
N2\ ¢
¢ NZX2 X3
where, in the case ¢q¢ — ¢4, x1, x2 and x3 are defined by
P+
Xl - §2 9
£2 12 a2
U t“+u
X2 = Nc? - =2 (B5)
st ]
g+a2 1 8P+a 24
X3 = ~3 ~

2 +N§ 82 N, g

This result can be also exploited to describe the subprocesses ¢q¢ — ¢'¢’ and
q7 — qq'. For q@ — ¢'q’ one has to keep in (B.f) only the s-channel contribu-
tions, i.e. drop all terms containing ¢ in the denominator, while for ¢ — ¢@
one needs only the ¢-channel terms.

The matrix I' is given by

and the matrix M is

® g9 — qq
The t-channel singlet-octet basis for this process is
1 = 57’17"357"27“4 s

1
2N,

1 (B.8)
57’17"357"27"4 + 557’17’457’27"3 .

Cy =
Since this subprocess is related to q¢ — ¢¢ by the crossing transformation
§ < 1, the matrix H has the same form as in eq. (B.4), with the functions x1,
X2 and 3 given by

s
Xl - '&2 9
A2 A2 72
S s“+t
= NCA_ —_— N y B9
X2 P 2 (B.9)
§% 4+ 02 1 248 28
e R A
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The unequal-flavour case q¢' — ¢q' can be obtained from equation (B.9) by
keeping only the t-channel terms.

The matrix I' for this subprocess reads

20T Cey
= ¢ , (B.10)
2U —5(T+U)+2CpU

while the matrix M is given in eq. (B.7).
® 49 — 49
We use here the t-channel basis

1 = 57"17"357“47"2 5
Co = dr2r4c (tc)rgm 3 (Bll)

C3 = ifrgmc (tc)rgrl .
The matrix H is then given by:

—]\}gX1 N%X1 N%Xz
1
— 1
2¢(Nc) NCX1 X1 X2 )

N%Xz X2 X3

(B.12)

where the factor ¢(N.) represents the average over incoming colours, that is
¢(N.) = N, (N? — 1), and the functions x1, x2 and Y3 are given by

§* + a2
X1 = — ~ A ;
20}
24
xe=(1+ 7)o (B.13)

The matrix I' for this subprocess is given by

(CF + CA) T 0 U
- 0 GT+GU QU |, (B.14)
2U NAU O CpT+%U
and the soft matrix M reads
2N2 0 0
M = Cp 0 N> -4 0 ) (B.15)
0 0 N?

C
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® g7 — gg and gg — qq

The subprocess qq@ — gg is better described with the s-channel basis

Cl == 57‘17‘257‘37‘4 9
Co = dr3r4c (tc)rgm 5 <B16)

C3 = Z'frsmc (tc>7“27“1 )

while the basis for gg — ¢ can be obtained from eq. (B.I6) by exchanging
incoming and outgoing indices.

In this case H has the same form as in eq. (B.12), with the appropriate flux
factor, ¢(N,) = N2 for q7 — gg and ¢(N,) = (N? —1)? for g9 — qq. The
functions x1, x2 and 3 can be obtained from those in eq. (B.13) by performing
the crossing transformation 3 « ¢ and multiplying the answer by (—1), since
one fermion is involved in the crossing. The explicit result then reads

2yl
X1 = 19& )
21
Xe={1+—)xi, (B.17)

~

4t
xs=\(l—— ) xi
5

The expression for I' in this case is

0 0 U-T
r— 0 QT+U) FU-7 |, (B.18)
2(U-T) %2 (U-T) L (T+1U)

while the soft matrix M is given in eq. (BI5).

® 99 —499

Considering all possible colour structures for this subprocess would lead to 9x9
matrices, which can be written in a block diagonal form, involving 3 x 3 and
6 x 6 submatrices [Bg]. For N, = 3 however, the basis vectors which give rise
to the 6 X 6 submatrix become linearly dependent, so that this matrix can be
reduced to 5 x 5. We will therefore reproduce here all results only for N, = 3.
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The basis we choose can be expressed partly in terms of ¢-channel SU(3) pro-
jectors as follows:
1
1 = Z[frlrgcdrgmc - dT1T20fT‘37‘4C] s
1
Co = Z[frlrgcdrgmc + dT1T2€fT‘3T4C] s
1
3 = _[fmracdmmc + d?"17"3cfr27"4c] )

4
1
Pl == _57‘17’357‘27'4 )
§ (B.19)
PSS - Sdrlr3cd7’27’4c )
1
PSA = gfrlrgcfrgmc 5
1 1
PIOEBf - 5(57’17’257’37"4 - 57’17"457’27"3) - gfmracfmmc )
1 1 3
Pyr = §<5r1r25r3r4 + 5r1r457’27’3) - §57’1T35T2T4 - gdrlrgcdrgmc :
The matrix H can be written in the form
O3><3 O3><5 )
H = , B.20
<05><3 Hsy5 ( )

where the 5 x 5 submatrix Hsys is given by

I Ix1 Ix2 0-3x1
' i I e 0-3xg
Hsys = 16 %Xz %X2 xs 0 —%X2 ) (B.21)

0 0 0 0 O

=3x1 _%Xl —%Xz 0 x1
and the functions xi, x2 and x3 are defined as follows:

. to & 2
xi=1-——=-

A~

A—2+
U S

Xo="%5—"5t=—7, (B.22)
_2T §a+1£a+1§£ L9 a2+§2 1 {2
=y 2 ae Tawe) T2\ da 28a)
The same can be done for the hard matrix I

I'sx3 O3><5)
r— , B.23
( O5><3 F5><5 ( )
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with I'3y3 given by

N.T 0 0
Tas=|( 0 NU 0 , (B.24)
0 0 N.(T+U)

and I'sy5 given by

61 0 —6U 0 0
0 3r+3% -3 -3U 0
3U 33U 33U WU
los— |1 —3% 30+% 0 =7 . (B.25)
6U U
0o =% o 3u %
0 0 —2 40 o7 +4U

Finally, we give the expression of the matrix M:

-5 0 0000
-5 0000
-5000
100
080
0080
00020 O
000 0 27

(B.26)

o O O o O
S O O o o O

0
0 O
0 O
0 O
0 0
0 0
0 O

o O O O O

C. Recoil

A subtlety that we have largely ignored in the main text concerns the technicalities of
the insertion of multiple soft and collinear momenta. In our discussion in section [ we
referred to the transverse momentum k; with respect to an original ‘parent’ dipole,
as defined in egs. (B-J), (B.4). Strictly speaking however, the soft and collinear
divergences in QCD amplitudes are of the form

dk? dz
-t (C.1)
kP z
where %, is measured not with respect to the original Born momenta (i.e. the event
without emissions), but with respect to the actual ‘final’ Born momenta after the
inclusion of all recoils,

o _ (2kpi)(2k-p))
ki = 2hp) (C.2)
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where we consider the transverse momentum with respect to an arbitrary Born dipole
ij, as opposed to just the dipole 12 used in section ..

To understand the relationship between k; and /~€t it is necessary to relate the
pi,; to the p; ;. When both p; and p; are outgoing momenta, the most general way
of writing p; ; in terms of p; ; and £, such that energy-momentum is conserved, is

pi=Ypi — fk+ (1 - X)p;, (C.3a)
pi=Xpi— (1= fk+(1=Y)p;, (C.3b)

where X, Y and f are free parameters. Requiring all the momenta to be massless
leads to two further non trivial conditions relating the X, Y and f. There is therefore
one degree of freedom (let us choose it to be f) left in how one distributes the recoil
between p; and p;. Physically, when £ is collinear to one or other of the legs, then it is
natural that leg that should absorb the dominant (longitudinal and transverse) part
of the recoil — this is simply because collinear emission occurs on long time scales
relative to the Born interaction and in such a limit the two legs become independent.
This corresponds to choosing f = 1 when k is collinear to p;, giving

pi-k

X=1- 2
pj-(pi — k)

Y=1. (C.4)
Analogous formulae hold for the case of k collinear to p; (taking f = 0). Eq. (C.4) is
essentially that given in the work of Catani and Seymour [[i] in terms of spectators
and emitters.

Note that regardless of these ‘naturalness’ arguments, when considering a single
emission, we are free to make any choice for f. This translates into an ambiguity
in the relationship between k; and k,. For an emission with Sudakov components
2@ and 219 with respect to p;; (as in eq. (E-J)), in the limit where the emission is
collinear to i (29 > 2()), we have

f=1: k= : f=0: ko=Fk. (C.5)

In the soft limit there is therefore no difference between the various definitions of
transverse momentum. For hard collinear emissions there is a difference, however it
is irrelevant from the point of view of the NLL structure of the matrix element and
phase space, [dk]|M?2(k)|, since one always has dk?/k? = dk2/k?. Sensitivity to the
differences in definition arises when considering the exact integration limits and the
scale of the coupling, however both of these issues are of relevance starting only from
NNLL accuracy.

One should be aware that there is dependence on the recoil prescription also in
the relation between k; and the value of the observable, since the observable is defined
in terms of k£ and the final Born momenta. Again there should be no sensitivity in
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the soft limit, while for hard collinear emissions any sensitivity will amount to an
ambiguity of a factor of order 1, which corresponds to a NNLL correction.

An equivalent analysis can be carried out for a dipole consisting of one incoming
(1) and one outgoing leg (7). Here there is no ambiguity, because the incoming leg
must remain collinear to the beam direction, giving

pi =Ypi, (C.6a)
ﬁ]—pj—k?+(Y—1)pl, C.6b
with )
Dj-
Y=14 —"""——. C.6c
pi'(pj - k) ( )

So far our discussion has assumed that we were able to uniquely identify a dipole
17 from which the gluon is emitted. However for processes with more than two legs
this identification is not unique — the leg to which the emission is collinear is well
identified (let us call it i), however the other leg, j, can be any of the legs in the
process (one can even have a combination of legs), with the restriction that if it is
incoming, it should not take any transverse recoil. It is straightforward to show that
the freedom in identifying leg 7 has no effect on the resummation at NLL accuracy.

While, as we have seen, there are no major subtleties for the recoil from a single
emission, the situation with multiple emissions is more complex. Let us examine
the successive insertion of two emissions, k;; and ko, into a dipole 15. We take
the situation where both Born momenta are outgoing, the emissions are collinear
to parton ¢, and use the f = 1 recoil prescription. We use p; ; to denote the Born
momenta after the insertion of ki, and ﬁ” after the insertion of k;. The notation
with multiples tildes is specific to this section, elsewhere a single tilde being used to
denote the Born momenta after recoil from all emissions.

We write ks in terms of Sudakov components with respect to p; j,

k2 = Zéz)ﬁl + Zéj)ﬁj + ktg COS (Z52 'ﬁ'in + ]{Ztg sin (Z52 'ﬁfout . (C?)

Note that the transverse unit vectors n;, and 7., differ between insertions 1 and 2,
though that difference can in practice be neglected.

In the limit where both insertions are soft, it follows from the reasoning above,
eq. (C3), that ki, the transverse momentum of &z as measured with respect to the
final ﬁ” dipole, is equal to k. However k1, also defined with relative to the 15@)]" is
given by .

ke o kg + 2 kg (C.8)

Even when both k& and ks are soft, the recoil from the second emission can have the
effect of substantially modlfymg the transverse momentum k; with respect to the
Born dipole, specifically if zl th > k1. One thus loses the correspondence between
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the generated transverse momentum, £, and the transverse momentum relative to
the final Born momenta, &y, the divergence in the matrix element being with respect
to the latter.

One way of avoiding this problem, i.e. of ensuring a correspondence between
the ‘intended’ transverse momentum and the actual transverse momentum relative
to the final Born particles, is by making an appropriate choice of insertion order.
For example, in our example above, if one first inserts the emission with the larger
transverse momentum, and then that with the smaller transverse momentum, the
transverse momenta with respect to the final Born momenta will, in the soft limit,
be identical to the inserted transverse momenta. The statement is equally true if one
inserts first the emission with largest angle.

The above analysis can be generalised to any number of emissions. Specifically,
we use the following procedure to ensure the correspondence between the k; and n
values that are ‘specified’; and the actual resulting k; and 7n values with respect to
the final Born momenta. It is to be kept in mind that it is in no way unique, but
rather one of many possible solutions to the problem.

e Emissions are ordered such that, first, one inserts those on leg 1, then those
on leg 2, and so forth (we recall our convention that incoming legs come first
in the numbering sequence). The order of emissions on a same incoming leg
is irrelevant, while on a same outgoing leg, emissions should be ordered in
increasing 7 (or alternatively decreasing k;).

e Each emission is inserted such that its k; and 7 are correct with respect to Born
momenta that include the recoil from all previous emissions.

e For an emission on an incoming leg ¢, the other leg that takes the recoil is
chosen freely among any of the outgoing legs. For an emission on an outgoing
leg 7, one either takes the secondary recoil from a freely-chosen incoming leg

j (eq. (C.6) with ¢ and j exchanged) or from a freely-chosen outgoing leg 7,
taking f = 1.27

The results for the observable should be independent of the details of the procedure,
for example whether one takes transverse momentum or angular ordering. The com-
bination of matrix element and phase space, expressed in terms of the ‘intended’ k;
and n values, is also independent of the details of the procedure. The only exception
is in the case of collinear emissions, where both the transverse momentum with re-
spect to the final Born momenta and the value of the observable may depend on the
details of the insertion procedure, any differences being a factor of order 1, which
translates to a NNLL ambiguity.

2"Note that there also exist valid insertion procedures using f = 0 for certain legs. One is however
then more restricted in the choice of recoil legs.
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D. Further examples of rIRC unsafety

Here, with the help of some resolution thresholds in jet-clustering algorithms, we
illustrate three cases of IRC safe observables that are rIRC unsafe. One example is
devoted to each of the rIRC conditions of section B.1].

D.1 Jade jet algorithm: FE-scheme

Jet clustering algorithms are widely studied observables. They typically involve a
distance measure y;; between two (pseudo)particles and a clustering sequence in
which one searches for the particle pair with the smallest y;;, clusters it into a single
pseudoparticle and then repeats the clustering procedure until all remaining pairs
have y;; > Yeut, Where ye,y is the jet resolution parameter. From the point of view of
this article, the observable that is typically of interest is the distribution of the value
of Y.t that demarcates the threshold between an n and an n + 1-jet event.

Of particular interest is the family of JADE algorithms [B3] because it represents
the only example of an observable for which the double logarithms have been found,
analytically, not to exponentiate [B4, Bj]. Taking the definition used in [B4], the
distance measure is @tV

yy =" (D.1)
and the recombination scheme is the F-scheme, ¢;; = ¢; + g;. It is straightforward
to show that, in the two-jet limit, at the level of a single soft and collinear emission,
the 2-to-3 jet threshold resolution, y3 is identical to 7 =1 — T,

azlzbg:dg:gg((b)zl, 621,2 (D2)

As above, we use v and &; to parametrise an emission x;(v), giving

In “”57) - (1 - %) o, ()= —%m@. (D.3)

Let us now consider two emissions x1(v) and ko(v) collinear to the two different legs
(1 and 2 respectively). One has (ignoring y,,,, ~ 1)
Yript = Yrops = U5 Yrapy = G v Yropt = vl v Yrike = TR ) (D.4)

and recombination will occur between ki and ko if & + & < 1. If this is the case,
then two recombinations are now possible, with distance measures

Yriapr = Yrapr T Ysopr T Ykine = Yrkopr s Ykiops = Ykips T Ykope + Ykikg == Ykips 5 (D-5)

and as a result the three-jet resolution parameter will be

ys ({B}, k1 (0), Ra(0)) = ! minEnE) E1+ & <1, b #1L,. (D.6)
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This does not scale as ¥, so the limit eq. (B.4) is not finite, therefore the observ-
able fails the first rIRC test. One can verify that this breakdown of scaling as v
occurs in a double logarithmic region, in accord with the known result [B4] that
the E-scheme JADE jet-resolution distribution fails to exponentiate at the double-
logarithmic level. An interesting demonstration of this point is in the evaluation
of F, or more specifically of its expansion in powers of R’, which starts at R, as
discussed in appendix [A.. The v — 0 limits of F and F;, diverge. This divergence
can be thought of as somewhat analogous to the divergence of NLO corrections for
an IRC unsafe observable.

:
2000 r *
0 S
o~ ‘ L
m
-2000 [ .
- -+ -1 Jade Ey scheme T
-4000 | ——— Jade E scheme Ty
1/96 In? 1/v )
24 kS
"""" -1/48 In” 1iv :
-6000 L L L L L
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In v

Figure 3: Calculation of F5 for the Jade y3 resolution parameter in the ¥ and Fy recombi-
nation schemes. The points have been calculated by Monte Carlo evaluation of eq. (R.1]).

Additionally the nature of the divergence provides information about the vi-
olation of exponentiation. Figure ] shows F, evaluated as a function of o, using
eq. (A1) (in whose derivation care has been taken to retain all leading logarithmic
dependence on 7). One sees that F, diverges as In”1/0, which is indicative of the
fact that the lack of rIRC safety is associated with ‘multiple-emission’ effects being
relevant not at order a?L?, but rather at order o?L*.

Using the following leading order, double logarithmic approximations
: 1
asCrp, L (D.7)

™ (%

! 1 i
mm:a@m%, R(5) =2

and comparing to the double logarithmic result in [B4], one obtains that the deviation

from exponentiation is expected to be of the form

F) =1 R(v) + 2F)

AR (D.8)
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If one tries to account for this for by a function F(R',v) = 1 + Fo(v)R'(v)* + ...
multiplying e=#®) then F,(v)R'(v)? should be equal to —R(v)?/12, i.e.
1 1

Fo(v) = T In? o (D.9)

This result is also plotted in fig. J and coincides well with the numerical evaluation
based on eq. ([A.11).

D.2 Jade jet algorithms: Ej-scheme

As it happens, the E-scheme as defined above is rarely used experimentally. More

common is the Ey scheme (see for example [6§]) where particles are recombined
according to

E.=F. + E, oo By

e W g

This has been studied analytically in [B]. One can repeat the analysis of section D-]],

and one finds that the problem with the first rIRC condition disappears because

(¢ + ;) - (D.10)

N1 2 Y ropy =~ MAX (Yiyp1s Ynape) == U and so the limit eq. (B.4) is well-defined and
finite.

One still needs however to verify the other conditions, eqs. (B.). A configuration
that is of interest here is that with two soft and collinear gluons, k;(v) and k2((20)
in the same hemisphere (say that containing leg 1). Note that we have reintroduced
(o (< 1). Let us assume r5((20) is much more collinear to the hard parton than
rk1(0), (D)% < 08/2, For the first recombination, the various possible clusterings
include,

Yripr = 1_17 Ykopr = C21_} ) Yrika = E(CQQ_])li& ) <D11>

and when (o > T)%, the first recombination occurs between x; and xs. Let us
suppose that this is the case. Then, as long as ky < kg, i.e. 0 /2 < () €/2,
the energy and transverse momentum of the k15 pseudo-particle will be dominated
by k9 and we will have

Yrrops = Ynopr = G20 (D.12)
Let us now examine this result in the context of eq. (B.52). To obtain the left-hand
side we should first take v — 0. Our requirement on ko((20) being more collinear
than k; simply implies & > &, as does the condition ky; < Kyo; then the first
recombination is automatically ko and we obtain the result that

Jim Ty g (5, 1 (0), ma(Ga0) = (61 — &), (D.13)

In contrast the right-hand side of (B.5d) is

tim Lys({5),ma(0) = 1. (D.14)
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Thus eq. (B.5d) does not hold and the Ey Jade algorithm fails on the second of the
recursive IRC safety conditions. Despite the failure being on a different condition
compared to the observables discussed above, here too the nature of the violation
is such that exponentiation is broken at the level of a?L? corrections. As in the
discussion for E scheme, one can evaluate the second order contribution to F as a
function of In v, and compare it with the known analytical result of [B7],

13 R?(v
f(v):l—R(v)—i—E 2() cee (D.15)
corresponding to F3(v) = & In®L. The comparison is shown in figure | and, as for

the E scheme, one finds good agreement.

A final subtle, but non-trivial point to note here concerns the requirement that
Ko > Ky for eq. (D.I3) to hold — though we have called our condition recursive
infrared collinear safety, in some cases the limits that we take, notably here (s — 0,
still leave the ‘infrared and collinear’ particle, kg, harder (larger transverse momen-
tum, larger energy, albeit smaller angle) than the supposedly dominant contribution
k1. This apparent paradox is closely related to the fact that we use a single quan-
tity, the value of V({p}, k), to define the degree to which an emission « is infrared
and collinear. This controls only some combination of the infrared and collinear
limits, but not the two independently (the remaining degree of freedom is set by &).
Thus two emissions which may be ordered according to one given soft-collinear cri-
terion, V({p}, k2) < V({p}, k1) are not necessarily ordered according to some other
criterion.

D.3 Geneva jet algorithm

Let us close this discussion of rIRC safety for jet algorithms by examining the Geneva
jet clustering algorithm [69]. It is similar in spirit to the preceding algorithms, except
that the distance measure is given by

8 E;E;(1 —cosby;)
YiT 9T (Bt E)?

(D.16)

the essential change being the replacement of @? in the denominator with (E; + F;)?.
For events with two hard partons and one soft collinear emission, this only changes
the normalisation of the y;; compared to the Jade family of algorithms, and one has

ag:bg:gg((b):l, dg:— 621,2 <D17>
The Geneva algorithm is interesting when a soft collinear emission, x(v), is split

collinearly, k1(v) — {ki,, k1, }(0, ), with a small normalised pair invariant mass,
u? = (K1, +K1,)? /K% < 1, and fractions 2, and 2, = 1 — 2, of the parent momentum.
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The various possible recombinations include (assuming k; is collinear to leg 1)

16
= —e

. . — . . — 2
ymapl = ZalYkip1 = RV, ymbpl = ZbYripr = “bU, ymamb —

—2m u?.
(D.18)
Whereas one would expect a ‘good’ jet algorithm to first recombine «;, and x;,, what
actually happens (as was first observed in [BY]), for v < g2, is that for z, > z, first
K1, is recombined with p;, and then &, is recombined with p; (inversely for z, < 2),
giving

Ql

, e 2mpy? < min(z,, )0,
max(z,, )0 , De M p? > min(z, 2)0 .

VDY k1, k1,3 (0, 1)) = (D.19)

As a result the two limits in eq. (B.5H) differ,

}}L% 11)1_{% %V<{ﬁ}7 {K/loﬂ Klb}<1_}7 M))) = max(za, zb) ) 11}1_{% %V<{ﬁ}7 K1 (1_})) =1,
(D.20)

and the observable fails on the second part of the second rIRC safety criterion. The
failure only occurs for hard collinear (non soft) secondary splittings. Furthermore
the two limits in eq. ([D:20) differ by at most a factor of order 1 (specifically by at
most 1/2). As a result it is possible to show that the full resummed distribution
for the Geneva yz resolution parameter differs from the master formula (for which
all elements are well defined) by terms afL". We note that in contrast to the
situation with the Jade algorithm, the rIRC unsafety of the Geneva algorithm does
not manifest itself through a divergent infrared dependence in the integrals for F,
because the integrations for secondary collinear splitting have already been carried
out analytically, assuming rIRC safety. Accordingly the F function is well defined
(F(R) =1).

E. Infrared and collinear safety

In the automated approach discussed in this paper, we do not actually explicitly
test for the full infrared and collinear (IRC) safety of the observable — we rather
assume that the user of the program is able to correctly design and code IRC safe
observables.?

We believe though that it is instructive to discuss some aspects of IRC safety,
for two main reasons. Firstly, IRC safety turns out to be somewhat more subtle than
is usually reflected in ‘textbook’ discussions. Secondly many of the issues that arise
concerning IRC safety are relevant also for rIRC safety, since the two conditions have
numerous similarities.

28Though many cases of IRC unsafety are actually caught out, for example by the rIRC safety
tests or by requiring a > 0 and by > —a.
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The general definition of IRC safety is that it is the necessary and sufficient
condition that an observable has to satisfy in order for its distribution to be calculable
and finite, order-by-order within perturbation theory.

For practical purposes however it is more convenient to attempt to cast IRC
safety in terms of certain properties of the observable’s functional dependence on
the emission momenta, because IRC safety can then be tested without explicitly
calculating order by order perturbative predictions for the observable. An example
of a definition (taken from p. 72 of [A7]) is

For the [variable’s distribution] to be calculable in perturbation theory,
the variable should be infra-red safe, i.e. insensitive to the emission of
soft or collinear gluons. In particular if p; is any momentum occurring in
its definition, it must be invariant under the branching

Di — Dj + D (E.1)
whenever p; and pj, are parallel or one of them is small.

One notes that that there are two parts to this definition, the first being somewhat
hand-waiving, the second appearing more precise. In certain other texts, only the
second part is given, for example (from section IV.A.2 of [[[Q])

[...] That is to say, the measurement should not distinguish between
a final state in which two particles are collinear and the final state in
which these two particles are replaced by one particle carrying the sum
of the momenta of these collinear particles. Similarly, the measurement
should not distinguish between a final state in which one particle has zero
momentum and the final state in which this particle is omitted entirely.

The argument that a cross section specified by functions & with this
property does not have infrared divergences may be understood as an
extension of the KLN theorem |...]

It is instructive to examine these (and other) definitions of IRC safety for some
‘designer’® observables in ete™ processes. These will be constructed in terms of
the n-jet threshold resolution parameters, y,, in the Durham jet algorithm [[[g].
Specifically, v, is the value of y.,; below which one has an n+1 jet event, and above
which an n-jet event. Individually, all the 1, are IRC safe observables.

Let us start by considering the following observable,

V=01+4+06(ys—vi)ys- (B.2)

29Just as designer clothes are those worn at fashion shows, but rarely in real life, designer ob-

servables are those discussed in theoretical articles, but rarely measured by real experimenters.
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It is non-zero starting from events with 3 partons. If a fourth parton is added then
the observable is identical to y3 and so appears to be IRC safe. Adding a fifth parton
and making it soft or collinear to one of the other emissions, then ©(y; — y37) will be
zero and again we will have the appearance of IRC safety.

Now let us examine what happens if we integrate over the momenta of partons 4
and 5, taking them to be ordered. Assuming that they are emitted off different (hard)
partons, we can approximate the phase space for each of them as dy;/y;In1/y;. We
also schematically write the phase space and matrix element for the emission of the
hard gluon ys dys|M?(y3)|. The mean value of V then gets an NNLO contribution
which schematically has the form

LE 1 Y4 1
(V)anto ~ o / dys| M2 ()| / D / W ln - (1 + (s — 1)) — ]

Ys
(E.3a)
Wy, 1 [Ydys 1
~ad [apalu [P [T (E3b)
Yy

where in the first line the rightmost term in square brackets accounts for the virtual
corrections. There is an infinite region of phase space for y4 and y5 where the real and
virtual contributions do not fully cancel. So even though the observable is insensitive
to any extra single arbitrarily soft or collinear emission (the condition often used to
characterise IRC safety, as in [[0]), it has a sensitivity to specific combinations of
multiple extra arbitrarily infrared and collinear emissions, and this is sufficient to
make it IRC unsafe.

It would be interesting to find a definition that would correctly identify eq. (E.9)
as IRC unsafe, but that is more precise than, say, the generic requirement of ‘insen-
sitivity to the emission of soft or collinear gluons’ of 7] and which therefore can
serve as a basis for automated testing of IRC safety. As we shall see however, this is
not a simple task.

As a first attempt, let us consider the following definition, inspired somewhat by
the mathematical definition of a limit. First we introduce some distance measure,
which parametrises the degree of collinearity of a pair of partons, or the softness of
a parton (the distance measure could be the relative k; of the pair, or their invariant
mass).

Version 1

Given almost any fixed set of partons (which we refer to as the ‘hard’
partons) and any value n, then for any x, however small, there should
exist an € such that branching the partons so as create up to n extra soft
or collinear emissions, each emission being at a distance of no more than
€ from the nearest ‘hard’ parton, then the value of the observable does
not change by more than .
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It is straightforward to see that the observable eq. (E.J) violates this condition.
The issue of sensitivity to multiple soft or collinear emissions is however not the
only problem that arises when attempting to define a general IRC safety condition.
Also relevant for example is the question of how quickly the effect of an emission
disappears as it is made soft or collinear.
If one defines

1

V=uys <1 + O(ys) In™? y_> ; q>0, (E.4)
4

then V tends to y3 in the limit iy, — 0. Specifically, if we take as our distance measure

the squared relative transverse momentum (normalised to the hard scale @), then

in our IRC definition given above, however small an x we choose, it suffices to take

—1/2% ¢ ensure that any recombination will not change V' by more than

e=y<e
Tys3.

As we have already discussed, the phase space associated with a fourth parton,
expressed in terms of y, itself, goes roughly as dy,/ysIn1/y, for each of the three
harder partons to which parton 4 can be collinear. If one attempts to calculate the
contribution to the mean value from the integral over this phase space, including the

subtraction of the virtual terms, one finds an order a2 contribution of the form

2 2 Bdy, 1 1
(V)xLo ~ g /dng (?Js)/ — In— {ys (1 +In q—) —ys} : (E.5)

Yo Ya Ya
This is divergent for ¢ < 2. At higher orders, since one effectively includes extra
logarithms in the numerator (for example from the integrations that lead to the
running of the coupling), one finds that however large a value we take for ¢, there
will be some fixed order beyond which it is not possible to calculate the perturbative

corrections to the mean value of V.

This suggests therefore that any corrections to an observable from extra emissions
should vanish at least as fast as a power of the collinearity or softness of those
emissions. This can be incorporated into Version 1 of our IRC definition, as follows:

Version 2

Given almost any fixed set of partons (which we refer to as the ‘hard’
partons) and any value n, then for any x, however small, there should
exist an € such that branching the partons so as create up to n extra soft
or collinear emissions, each emission being at a distance of no more than
€ from the nearest ‘hard’ parton, then the value of the observable does
not change by more than .

Furthermore there should exist a positive power p such that for small x,
e can always be taken greater than x?.
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One can straightforwardly verify that the observable of eq. ([E.4) is correctly classified
as unsafe with such a formulation of the IRC condition.

One of the patterns that the reader may see emerging from our discussion so far
is that for each definition or IRC safety, one is able to design an observable that is
incorrectly classified, requiring that one further refine the definition. Unfortunately
this is a major difficulty, with even Version 2 of our definitions suffering from this
problems.

The difficulty can be illustrated with the following set of observables,

V =y3(14+ O(ys — | cosbayl)), (E.6)
V =y3(1+O(ys — | cosbasl)), (E.7)
V =y (1 4 S _?LCOS 923|)) , (E.8)

where 6;; is the angle between jets i and j after clustering to max{i, j} jets and with
jets numbered such such that E; > E; ;.

The first observable is IRC safe, because the extra ©-function term only con-
tributes significantly in the logarithmic integration over y, when cosfs4 is close to
zero (a rare occurrence). It is however classified as IRC unsafe according to Ver-
sion 2 of our condition, because if one adds an emission (4) such that it is exactly
perpendicular to jet 2 then however soft it is, it changes the value of the observable
by a factor of 2.

The second observable, eq. (E7), is quite similar, and in particular is also IRC
safe. Unlike eq. (E.G), it is correctly classified by Version 2 of our IRC condition.
This is because € is to be found for a given fixed configuration of hard momenta (in
particular a given fixed value of f3). It is not necessary that the same € be valid for
all hard momenta. Accordingly, however close 63 is to zero, one can always find an
appropriate value of € for a given x. An exception occurs for 653 = 0, however this
corresponds to a region of zero measure in phase space, and is an allowed exception
insofar as we required that the condition be true for almost any set of hard partons.

The third observable, eq. (E), also passes the test — the presence of 34 in the
denominator does not change one’s ability to find a point at which the effect of the
fourth emission disappears. However it does change the integrability properties, since
the presence of the 1/y, factor compensates the reduced 653 phase-space, leading to
a divergent NLO contribution,

Y3 q 1 s} . 0
(V)xro ~ as /dy3d923\M2(y3,923)\/ P — {yg <1+ (ya = | cos 23‘))_3;3]

Ya Yq Yq
(E.9)
In(1/cosf
~ Ozg / dy3 d¢923 |M2(y3, 923)‘ Y3 ( / 23) . (Egb)
cos o3
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For each of the mis-classifications identified above one could envisage some work-
around that would solve the problem: for example allowing a subset of soft and
collinear emissions to violate the IRC condition, as long as the subset’s measure is
sufficiently limited; or requiring the observable’s value to be bounded.

But in the absence of a formal derivation of the resulting IRC condition, a
doubt will always persist as to its general validity. Such a formal derivation might
well be inspired by mathematical statements concerning the properties required of
multivariate functions in order for them to be integrable. However that is beyond
the scope of this article.

Let us finally comment on recursive IRC safety in the light of this discussion.
Egs. (B.3) for recursive IRC safety are similar to formulations of normal IRC safety
in terms of a single emission that is made soft or collinear. The preamble to the
discussion of rIRC safety attempts instead to give a general statement, somewhat
analogous to that for IRC safety in [f7]. The former is more understandable insofar
as it appears more precise. One should however be aware of its limitations. For
example in eq. (B3])), we have explicitly seen the need for the observable to be
insensitive with respect to the removal of multiple relatively much softer emissions.

F. Divergences of F

F.1 General considerations

To obtain a more general understanding, than was given in section B.4, of the contexts
in which divergences can appear, it is useful to consider the case of the broadening
with respect to the photon axis in the Breit-frame current hemisphere of DIS, B,g.
From the analytical studies in [24], one can write B, in terms of the soft and collinear
emissions, k;, as

1 - - - - -
BzE - é (|kt,Hc + kt,HR| + Z |ktl|> ’ kt’HR/HC - Z kti’ (Fl)

i€Hc t€HR/He

where Hg and Hc are the remnant and current hemispheres (associated respectively
with legs 1 and 2) and the notation Hg /He means either Hyr or He. For B, to be
small it is necessary to suppress emissions on leg 2 (since there are no cancellations in
> ieHe |ky:|), while through a cancellation in the 2-dimensional vector sum, emissions
on leg 1 can contribute little overall to B,g even if individually they have large
transverse momenta. Accordingly, for configurations in which the hardest emission
is on leg 1, there is a small-y contribution to P(y) of the form

Ply) ~y* -y, y—0, (F.2)

where the first factor is that associated with the cancellation in the vector sum, while
the second is associated with the Sudakov suppression for emissions from leg 2.
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More generally there are observables for which cancellations can occur for emis-
sions off a subset s of the legs, while the complementary subset of legs (5) shows no
cancellations. In such a case, assuming in analogy with before that there is a power
p associated with the structure of the cancellations on set s, then

Ply)~y" -y, y—0, s= > Cury. (F.3)

This gives a divergence at R’ = p 4+ R. or equivalently R, = p. For the case of B.g
this corresponds to R/, = 2 or equivalently, R’ = 4.

Such arguments can also be extended to cases where there are several subsets
of legs subject separately to cancellations, si, so, ..., each being associated with a
power p;. In such a situation, if the hardest emission is from a leg belonging to set
s;, then there is a contribution to P(y) for small y of the form

eyt (F.4)

in which a cancellation occurs on set i and Sudakov suppression is responsible for
limiting the contributions on all other legs. This would lead to a divergence in F
when R = p;. There are also situations in which a cancellation occurs additionally
on a second set, s;, giving a contribution to P(y) that goes as

ypi-i-pj . leiRgiijo . (F5)

This leads to a divergence in F when R + R;j = p; + pj. The argument can be
extended to situations in which cancellations occur on any number of subsets of legs
with cancellations.

The divergence that limits the calculation of F is that which occurs at smallest
value of the overall R’. One can show that it is determined by contributions of the
form eq. (F-4) in which the cancellations occur within a single set. Thus the position
of the divergence of F is given by the solution of R = p; that corresponds to the
smallest R’ (we recall that for a fixed colour configuration, the {R] , R[} are not
independent quantities, but rather all depend on A = fFyasL).

F.2 Speed of Monte Carlo convergence

As was mentioned in section B.4, in many cases the divergence occurs at a value of
the overall R’ that is sufficiently large that one can ignore it for phenomenological
purposes. However it turns out that problems arise in the Monte Carlo determination
of F at smaller, relevant, values of R’. To better appreciate the issue we consider
the variance for the calculation of F,

< d /
oF = / dy y e 2 iny _ 2 (F.6)
0 Y
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The statistical error on the Monte Carlo integration with N events is given by
Vor/N. Considering the general case, introduced in section [.1], of an observ-
able with subsets s; of legs each having a zero associated with a ‘power behaviour’
pi, one can show that o diverges for the smallest value of R’ for which there is a
solution to any of the equations p; = R + R’. For an observable where all legs
are simultaneously involved in the cancellation (R' = R.) this just corresponds to
R’ =p/2 = R./2. In contrast when there are different subsets of legs with and with-
out cancellations the variance usually diverges earlier, at R’ < R../2 — for example
for B.g, eq. (E.1)), one can show that it diverges for R’ = 4/3 (whereas R, = 4).

The divergence of the variance is a standard characteristic of Monte Carlo in-
tegration when dealing with integrands with singularities of the form 1/,/y and
stronger. It does not imply that Monte Carlo methods cannot be used — the re-
sult of the integration still converges, but since o grows with N, the error on F,
oz /N, converges more slowly than 1/ V/N. Specifically the error on an integral
of the form fol dy/y® converges as N~ ! for a > 1/2, when y is generated uniformly
between 0 and 1.

For values of R’ close to the point where the variance diverges, this is not too
serious a problem, however if one wishes to investigate the structure of F closer to the
divergence of F itself then the slow Monte Carlo convergence becomes a significant
issue. A standard solution is to perform a Jacobian transformation on the integration
so as to increase the number of points in the vicinity of the divergence. Because of
the complexity of the probability distribution eq. (B.33), it is highly non-trivial to
do this for an arbitrary observable.

However for many observables of practical relevance, the cancellations that are
observed tend to fall into a limited number of classes (such as the 2-dimensional
vector sum discussed in section B.4). Given knowledge of which sets of legs have
cancellations, as well as the class of cancellation, improvements can be obtained.?°

To analyse possible cancellations the program proceeds through various steps.
It first considers configurations with two emissions, off legs ¢; and ¢ respectively.
For each combination of ¢; and ¢5 (which can be equal) it establishes whether there
can be cancellations that lead to a zero of the observable — we call this a ‘common
zero’ of legs /1 and /5. The legs are then classified into subsets of legs such that, the
legs from two different subsets never have a ‘common zero’, and such that if a subset
contains more than one leg, then each leg in that subset has a common zero with at
least one of the other legs in the subset. In this manner one determines the subsets
s() and § of section [F.1.

For each subset (s) the program then examines various hypotheses concerning the
origin of the zeroes. The hypotheses can be formulated as the requirement that the

30The information could also be used to provide analytical improvements beyond the point of
the divergence, as in [@] One should however also be aware of the complication of dynamically
discontinuous globalness ] which arises in many such cases.
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value of the observable be unchanged under the replacement of all emissions k; € s
by a suitably chosen single emission K (while emissions k; ¢ s are not modified). An
example replacement is that corresponding to the two-dimensional vector sum,

K= k. (F.7)
i€s
(where the choice of n is free). This tends to be relevant only for observables where
for £ € s, by =0 and g,(¢) = 1.

Certain observables (for example the transverse momentum of a Drell-Yan pair)
are fully described by this condition. But the resulting divergence (at R. = 2)
significantly limits the region of validity of the calculation and one is better off using
the transform methods of [ for performing the resummation. In many other cases
(such as B,g) the vectorial cancellation applies only to a subset of legs. The resulting
R/ is therefore larger, and there is a significant region in which the observable’s
distribution is formally well-predicted, but the Monte Carlo calculation is poorly
convergent.

Having established that some simple form for the replacement is valid, such as
eq. (F.7), one can then obtain significant improvements in the convergence of the
Monte Carlo calculation of F, essentially by generating not the k; € s, but rather
directly the replacement emission K, with the appropriate analytically calculated
distribution. As discussed in detail in [F.3, this gives one the freedom to introduce
a Jacobian in the calculation of F (which otherwise is quite difficult to do), which
vastly improves the Monte Carlo convergence.

Such methods hold not only for the cancellation eq. (F.7), but also for other
classes of zeroes, for example in observables that are sensitive to cancellations in a
single component of the transverse momentum and to cancellations from legs that
individually are additive but combine together with different signs. Full details are
given in appendix [F.3.

It is to be kept mind that there exists a small number of observables with
multiple-emission zeroes for which the detailed analytical origin of the zeroes has
not been understood (for example the eTe™ oblateness) or does not fall into any of
the above classes. For such observables a Jacobian improvement is not available, so
that while F remains calculable there is a region of R’ in which the Monte Carlo
convergence is rather poor.

F.3 Details of MC analysis

The details of the Jacobian-improvement method are as follows. With the naive
Monte Carlo approach to calculating F, the number of events in a given interval
dy of y (in the notation of section B.4) is dydP/dy, the corresponding weight being
y~ ' Let us first consider how to improve the convergence when all legs have a simple
common zero (R, = R', R, = 0) and for which we can calculate dP/dy analytically.
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We are then free to generate y with some alternative distribution d75/ dy and then
for each event include an extra weight w(y) such that wdP/dy = dP/dy. The results
for F and its variance are then

©  gp . © ap o
Fe / ay Y iy o= / ay P 22" _ 2 (1w
0 dy 0 d?/

Since one can use any form for d75/ dy, by making it sufficiently peaked at small y
one can ensure that the variance converges for R’ < p. Specifically, for a distribution
P(y) ~ yP at small y, one can take P(y) = y?~ %, implying a weight function

R is independent of

w(y) ~ y™. One immediately sees that the combination w(y)y~
y for small y, ensuring that the variance remains under control even for values of R’
approaching p.

Of course if we are able to calculate dP/dy analytically, then we are probably
also in a position to obtain F with only marginally more work and there is no need
for any Monte Carlo integration! However there are observables for which we are
able to calculate to dP/dy analytically for emissions off only the subset s of legs
with a common zero, but not necessarily for the full situation including emissions off
the remaining legs (subset s).

To explain the situation that then arises, let us denote by y, (ys) the value of the
observable with just the emissions off the subset s (5), with integrated probability
distributions Ps(ys) and Ps(ys) separately for ys and ys. The function F is then

given by,

dPs(ys) dPs(ys)
dys dys

where the rescaled value y of the observable has been written as a function y(ys, ys,. . )

]—":/dysdys (s ys - (F.9)

of ys, ys and other (unspecified) degrees of freedom such as correlations between
emissions in s and § over which we integrate implicitly. The function y(ys, ys, - . .)
typically has the property that for y, < ys, y ~ ys, while for ys > ys, y ~ ys, so we
can understand the behaviour of F by modelling it with y = max{ys, ys}.

The configurations that are responsible for the divergence in F are those whose
hardest emission is in s, since if the hardest emission is in §, then y; is bound to be
of order 1 (as is y). Accordingly, for small y, and ys,

Ps(ys) ~ y¥, Pslys) ~ yoe. (F.10)

This, together with the model y = max{ys, ys} is the origin of eq. (F.3).

To improve the Monte-Carlo convergence of the integral, we can as before gen-
erate y, with a modified probability distribution, as above, 758(y5) = yg_R; and a
weight function wg(ys) ~ yf *. This improves the Monte Carlo convergence a little,
the variance diverging for R’ > p rather than R’ + R, > p, but the situation is still
problematic.
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To further solve the problem one should also modify the generation of y;. We
have no analytical information about the form of Ps(ys) other than that in eq. (F.10)
— however the origin of the behaviour in eq. ([F.10) is simply Sudakov suppression, es-
sentially associated with the probability distribution of the generation of the hardest
emission in §. This generation of the hardest emission is actually straightforward to
modify, so that, given a value for y, we can generate y; with an integrated distribution
Ps(ys) ~ y3* down to ys ~ y, and a corresponding weight function ws(ys) ~ yf st
It is straightforward to show, within our model for the observable, that the variance
then remains integrable for all values of R’ up to the divergence of F itself.

In situations in which no method is available for modifying the generated distri-
bution of y,, we can actually still modify the distribution of 5, and we find that the
variance remains integrable up to R, = (p + 1)/2. This does not in general take us
all the way to the position of the divergence of F but still represents a significant
improvement.

We close this section by providing the exact forms of P(y;) for certain common
classes of cancellations. These are used in the program.

F.3.1 Two-dimensional vector sum

Let us first consider an observable having a set s of legs with a common zero, such
that the replacement emission is one whose transverse momentum is the vector sum
of all the actual emissions in s, cf. eq. (F.7). For simplicity we will assume that all
the legs in the set have b, = 0, g/(¢) = 1, and a common value of d;, however the
result can be applied more generally.

If we use ki to denote the largest of the transverse momenta of the actual
emissions (if emission 1 is in s then ko = (9/dy)"/*Q), for a given value of R, =
ZEES Cyry, the distribution of the value of the replacement transverse momentum K;
will be

dP(K,) Pdir, i, i d’ ’ft iR
K 0 ib. Ky zb.kto i ibokeei 1) F.11
K, t/ iz o € 27rkt2l ( )

o0 ’fto dk
- K, / bdb Jo(bK,) Jo(bky) exp <R; / kt<J0(b/<:t) - 1)) (F.11b)
0 0 t

as can be derived using standard analytical resummation techniques, such as those

of section B.2.

F.3.2 One-dimensional signed sum

Various observables involve direct differences between the effect of emissions in differ-
ent regions. For example the absolute difference between the two squared jet masses
pp = |p1—p2| in eTe™, where we recall that the squared jet masses have the property
that individually they are additive (like the thrust). Let us extend this temporarily
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to be any signed difference, Vp = Vi — V5, where the V, are additive observables
separately for the two legs. Therefore we can write

Vo({p}, k1(C1D), -+ K (GnD) —v( oG- Y g) (F.12)

Vi, 0;=1 Vi, ;=2

Given R, = Cyrj, and allowing for the possibility that R| # R, (of relevance to
subsequent applications) we can write the following expression for the distribution
of y = limgz_o Vp /0,

dP(y) dv , [Rie” + Rye'] + °° / dy 1y
Rt vy v —1
dy omiC [ R} + R, } H — m' H ) ’

- (F.13)

where the factor in square brackets accounts for the fact that there is an emission

with ¢ = 1 on either leg 1 or leg 2; the factor (—1)* is simply a compact notation for
the fact that the contributions from leg 1 (2) enter with a positive (negative) sign in

eq. (F.13). This gives

dP(y) /dz/ yR’le—v+R’2@V B RLE(—) / dt i
_ vyt€ TIne v v E(z) = 1— .
dy o R| + R, ¢ ’ (=) = 0 t< e)
(F.14)

The probability distribution for the absolute value of y is then simply

dP(|y|) _ / ﬂeyy (R’le_l/ + R'2 ev e—R’lE(u)—RgE(—V) R/e + R’ —v 6—R/1E(—V)—R’2E(V))
d|yl 27i R} + R}, R} + R}, '

(F.15)
Quantities that are amenable to this kind of analysis can arise not only from differ-
ences between contributions from two different legs, but also within a single leg ¢, for
example in sums of a single component of transverse momentum. In hadronic-dijet
production this occurs for instance for a thrust minor distribution based on particles
only in restricted phase-space region R

7 Qzi
Tm w ) QL,R - Z qii, (F]'G)

Q1R ieR

where the x direction is defined as that perpendicular to the beam and to the global
transverse thrust axis, which together define the event plane and ¢, ; denote momenta
transverse to the beam direction. In such cases R} and R} are each replaced by R;/2.

G. Specific eTe™ observables

In this section we present some theoretically and phenomenologically interesting
issues which arise from the study of (new) observables in the simple environment of
ete™ collisions.
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T1/2 73/2

(leg (] a0 | b [aq(@)] d | [legt] a0 | b [aqlo)] d |
1 1.000 | 0.500 | 1.000 | 1.000 1 0.500 | 0.000 | 1.000 | 1.000
2 1.000 | 0.500 | 1.000 | 1.000 2 0.500 | 0.000 | 1.000 | 1.000

Table 1: Leg parametrisation coefficients for 7/ (left) and 73/, (right).

G.1 BKS observables: limiting cases

Following [PJ] we consider the three-jet observables!

S, By sin6,]* (1 — | cos 6;])"
Tx = — )
Ei |Qz|

where the 6; are the angles with respect to the thrust axis. The adjustable parameter
x allows one to control the importance of the soft-large angle and hard collinear
region. For the observable to be IRC safe x should be in the range —oco < z < 2, the
value of x = 0 giving the thrust, while 7 corresponds to the total broadening [[]]

(G.1)

(to within a factor of two).

It is well known that the perturbative resummation of the thrust and broaden-
ing distributions are different in that in the thrust case hard parton recoil can be
neglected at NLL (giving an additive observable, F = ¢~/ /T'(1+ R')), while this is
not the case for the broadening distribution (which has a more complicated form for
F). As was shown in [P3, 0], the additivity property actually holds for all values of
x < 1. Since we know that a transition occurs at x = 1 it is interesting to examine
what happens beyond that point, for 1 < x < 2, especially since this region of x
was not studied in B2, (). We therefore show here two observables, 7 /2 and T35
(though we have also studied other values of z).

We establish numerically that both observables satisfy all applicability conditions
of Sec. B.J. The properties with respect to a single emission are parametrised by the
coefficients in Table [I.

For 715 the results are consistent with a = 1, b = 1 — x, as derived in [P3,
for x < 1. The multi-emission properties of 7/ are also found to be consistent
with additivity, again as expected, a consequence of the fact that the sum in the
numerator of eq. ([G.1]) is dominated by the soft and collinear emissions rather than
by the recoiling hard partons.

Instead for 73/, we see that the analytical dependence of a and b on x must
change. Examining a range of values of x reveals that for 1 < z < 2 one has
a = 2—x, b= 0. The multi-emission structure is also interesting in that the program
reveals that for each leg ¢ separately, the observable remains unchanged under the

31In the original definition x is named a, this would however cause confusion with our coefficient
a parameterising the dependence on the transverse momentum.
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replacement of all emissions with a single emission having transverse momentum
Zid lgn-. Both of these features are a consequence of the fact that with x > 1, it is
the recoiling hard partons that dominate the sum in the numerator of eq. ([G.1)).

In [Q] it was argued that the class of observables in eq. ([G.]) is particularly
interesting from a non-perturbative point of view. Non-perturbative corrections to
these observables were shown (under certain assumptions) to follow a scaling rule
which allows one to relate 1/Q) power-suppressed non-perturbative corrections of an
observable with a given value of z, to one with a different value of z, for instance the
thrust, whose non-perturbative corrections have been extensively studied. What is
remarkable about this scaling is that it holds for all moments of the shape function,
not just for the first moment as is usually the case [[J] when relating perturbative
corrections of different event shapes.

This scaling rule breaks down for z > 1, the x = 1 (broadening) case being
known to have a more complicated power correction structure [73]. Actually, even
for x approaching 1 from below it is likely to be difficult to test the scaling rule in
detail: the first moment of the power correction scales as 1/(1 — z) [fd], but the
broadening is known to have a first moment enhanced by 1/,/as. This suggests that
the scaling must actually start to break down for 1 —x ~ /as.

Furthermore, perturbatively, at NLL there is a discontinuous change in the struc-
ture of F when going from z < 1 to x = 1. Given that abrupt transitions at one
order are usually associated with divergent corrections at higher orders, for z — 1
we expect the NNLL terms to be enhanced by factors related to In(1 — x), meaning
that predictions at any fixed resummed order may be unreliable for x close to 1.

This has prompted us to search for a class of observables having identical per-
turbative and non-perturbative properties to the BKS class for x < 1, but with a
smoother transition through x = 1.

G.2 Fractional moments of energy-correlations

Given the above arguments, and inspired by [[5], we modify the definition of the
observables in eq. ([G.) to be

E,E;|sinb,;:|*(1 — | cos ;)= N o
po, =y, BB Co (G i ) . (G2)
i#j o

where the sum runs over all particles in the event, 6;; denotes the angle between
particle ¢ and 7 and 7ir is the thrust axis.

As for the BKS class, these observables are IRC-safe for all values of z < 2, and
they vanish in the two-jet limit. The ©O-function in the definition serves to eliminate
recoil corrections that would otherwise have entered in the term of the sum that
involves both hard partons. Its particular argument is designed so as to ensure the
observable is non-zero for all large-angle 3-jet configurations.
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FCl FCg/Q

‘ leg ¢ ‘ ag ‘ be ‘ 9e(®) ‘ dy ‘ ‘ leg ¢ ‘ ay ‘ be ‘ 9e(®) ‘ dy ‘
1 1.000 | 0.000 | 1.000 | 1.000 1 1.000 | —0.500 | 1.000 | 1.000
2 1.000 | 0.000 | 1.000 | 1.000 2 1.000 | —0.500 | 1.000 | 1.000

Table 2: Leg parametrisation coefficients for F'Cy (left) and F'Cs/y (right).

For x < 1 one can verify that both the NLL and non-perturbative properties are
identical to those of the BKS class. It is therefore most interesting to show results
of numerical studies at the BKS transition point, x = 1 and beyond, for x > 1. We
consider here then as examples F'Cy and FCs),.

The numerical analysis of these observables allows us (as usual!) to establish
immediately that they satisfy all applicability conditions needed to achieve NLL
accuracy in the resummation. The dependence on a single emission is associated
with the coefficients in Table f]. Of particular interest here, is that F'C'/, constitutes
an example of an observable whose b, coefficients are negative. This means that, for
fixed transverse momenta, collinear emissions are more important than large angle
ones. We are not aware of any other observables (other than trivial modifications
of eq. (G.2)) that have this property. It turns out that for all z < 2, @ = 1 and
b=1—x, i.e. there is a continuous transition through z = 1.

The other interesting property of these observables is that they are all additive,
independently of the value of x. This suggests that the perturbative prediction
will remain well-behaved across the whole range of x, allowing one in particular to
examine the region around x = 1.

The additivity also has interesting consequences for the non-perturbative prop-
erties of these observables. Specifically for all event shapes for which leading 1/Q
power corrections have been computed, it turns out that non-perturbative correc-
tions can be parametrised in terms of one single parameter, which in the dispersive
approach [[[4] can be expressed in terms of the average value of the coupling constant
below an infrared matching scale puy

1 K
ag = —/ dk as(k) . (G.3)
HrJo

(After merging perturbative and non-perturbative results, the answer does of course
not depend on the value of 17.) Testing the universality pattern of non-perturbative
emissions reduces then to verifying that o extracted from fits to distributions of
different observables has the same value.

As with the BKS observables, for < 1, the coefficient of the power correction
will go as 1/(1 — x). However because of their additive nature, it is to be expected
that F'C, observables will maintain this behaviour up to a somewhat larger value
of z, possibly giving a InQ/Q rather than a 1/@Q corrections in the limit a = 1.
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Following the arguments of [[[5] (originally applied to the jet-broadening, for which
a more sophisticated analysis subsequently turned out to be necessary) this would
suggest that non-perturbative corrections to F'C will depend both on o and on a
higher moment of the coupling

1 [ k

ay = — dk as(k) In — . (G.4)

M1 Jo Hr
The observables with z > 1 would also be interesting to study from the non-
perturbative point of view: b = 1—x < 0 implies that the non-perturbative correction
will come dominantly from the collinear region (as opposed to the large-angle region,
as is usually the case for event shapes), potentially involving a fractional moment
of the coupling. This is a region which has not so far received much attention in
analytical studies of non-perturbative effects in final-state observables and deserves
to be further investigated.
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